Hormones and Cancer

, Volume 1, Issue 3, pp 146–155

In Utero Exposure to Diethylstilbestrol (DES) or Bisphenol-A (BPA) Increases EZH2 Expression in the Mammary Gland: An Epigenetic Mechanism Linking Endocrine Disruptors to Breast Cancer

  • Leo F. Doherty
  • Jason G. Bromer
  • Yuping Zhou
  • Tamir S. Aldad
  • Hugh S. Taylor
Article

Abstract

Diethylstilbestrol (DES) and bisphenol-A (BPA) are estrogen-like endocrine-disrupting chemicals that induce persistent epigenetic changes in the developing uterus. However, DES exposure in utero is also associated with an increased risk of breast cancer in adult women. Similarly, fetal exposure to BPA induces neoplastic changes in mammary tissue of mice. We hypothesized that epigenetic alterations would precede the increased risk of breast neoplasia after in utero exposure to endocrine disruptors. Enhancer of Zeste Homolog 2 (EZH2) is a histone methyltransferase that has been linked to breast cancer risk and epigenetic regulation of tumorigenesis. We examined the effect of BPA and DES on EZH2 expression and function in MCF-7 cells and in mammary glands of mice exposed in utero. DES and BPA treatment approximated human exposure. EZH2 functional activity was assessed by measuring histone H3 trimethylation. Treatment of MCF-7 cells with DES or BPA led to a 3- and 2-fold increase in EZH2 mRNA expression, respectively (p < 0.05) as well as increased EZH2 protein expression. Mice exposed to DES in utero showed a >2-fold increase in EZH2 expression in adult mammary tissue compared with controls (p < 0.05). EZH2 protein was elevated in mammary tissue of mice exposed to DES or BPA. Histone H3 trimethylation was increased in MCF-7 cells treated with BPA or DES. Similarly, mice exposed to BPA or DES in utero showed increased mammary histone H3 trimethylation. Developmental programming of EZH2 is a novel mechanism by which in utero exposure to endocrine disruptors leads to epigenetic regulation of the mammary gland.

Keywords

Endocrine disruptor Epigenetics Histone methylation Breast cancer 

References

  1. 1.
    Colborn T, vom Saal FS, Soto AM (1993) Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 101:378–384CrossRefPubMedGoogle Scholar
  2. 2.
    Greenberg ER, Barnes AB, Resseguie L, Barrett JA, Burnside S, Lanza LL, Neff RK, Stevens M, Young RH, Colton T (1984) Breast cancer in mothers given diethylstilbestrol in pregnancy. N Engl J Med 311:1393–1398CrossRefPubMedGoogle Scholar
  3. 3.
    Colton T, Greenberg ER, Noller K, Resseguie L, Van Bennekom C, Heeren T, Zhang Y (1993) Breast cancer in mothers prescribed diethylstilbestrol in pregnancy. Further follow-up. JAMA 269:2096–2100CrossRefPubMedGoogle Scholar
  4. 4.
    Calle EE, Mervis CA, Thun MJ, Rodriguez C, Wingo PA, Heath CW Jr (1996) Diethylstilbestrol and risk of fatal breast cancer in a prospective cohort of US women. Am J Epidemiol 144:645–652PubMedGoogle Scholar
  5. 5.
    Palmer JR, Hatch EE, Rosenberg CL, Hartge P, Kaufman RH, Titus-Ernstoff L, Noller KL, Herbst AL, Rao RS, Troisi R, Colton T, Hoover RN (2002) Risk of breast cancer in women exposed to diethylstilbestrol in utero: prelimiinary results (United States). Cancer Causes Control 13:753–758CrossRefPubMedGoogle Scholar
  6. 6.
    Palmer JR, Wise LA, Hatch EE, Troisi R, Titus-Ernstoff L, Strohsnitter W, Kaufman R, Herbst AL, Noller KL, Hyer M, Hoover RN (2006) Prenatal diethylstilbestrol exposure and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 15:1509–1514CrossRefPubMedGoogle Scholar
  7. 7.
    Lopez J, Ogren L, Verjan R, Talamantes F (1988) Effects of perinatal exposure to a synthetic estrogen and progestin on mammary tumorigenesis in mice. Teratology 38:129–134CrossRefPubMedGoogle Scholar
  8. 8.
    Rothschild TC, Boylan ES, Calhoon RE, Vonderhaar BK (1987) Transplacental effects of diethylstilbestrol on mammary development and tumorigenesis in female ACI rats. Cancer Res 47:4508–4516PubMedGoogle Scholar
  9. 9.
    Walker BE (1990) Tumors in female offspring of control and diethylstilbestrol-exposed mice fed high-fat diets. J Natl Cancer Inst 82:50–54CrossRefPubMedGoogle Scholar
  10. 10.
    Krishnan AV, Stathis P, Permuth SF, Tokes L, Feldman D (1993) Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology 132:2279–2286CrossRefPubMedGoogle Scholar
  11. 11.
    Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV (2007) Human exposure to bisphenol A (BPA). Reprod Toxicol 24:139–177CrossRefPubMedGoogle Scholar
  12. 12.
    Ye X, Kuklenyik Z, Needham LL, Calafat AM (2006) Measuring environmental phenols and chlorinated organic chemicals in breast milk using automated on-line column-switching-high performance liquid chromatography-isotope dilution tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 831:110–115CrossRefPubMedGoogle Scholar
  13. 13.
    Schonfelder G, Wittfoht W, Hopp H, Talsness CE, Paul M, Chahoud I (2002) Parent bisphenol A accumulation in the human maternal-fetal-placental unit. Environ Health Perspect 110:A703–A707PubMedGoogle Scholar
  14. 14.
    Ikezuki Y, Tsutsumi O, Takai Y, Kamei Y, Taketani Y (2002) Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum Reprod 17:2839–2841CrossRefPubMedGoogle Scholar
  15. 15.
    Yamada H, Furuta I, Kato EH, Kataoka S, Usuki Y, Kobashi G, Sata F, Kishi R, Fujimoto S (2002) Maternal serum and amniotic fluid bisphenol A concentrations in the early second trimester. Reprod Toxicol 16:735–739CrossRefPubMedGoogle Scholar
  16. 16.
    Engel SM, Levy B, Liu Z, Kaplan D, Wolff MS (2006) Xenobiotic phenols in early pregnancy amniotic fluid. Reprod Toxicol 21:110–112CrossRefPubMedGoogle Scholar
  17. 17.
    Block K, Kardana A, Igarashi P, Taylor HS (2000) In utero diethylstilbestrol (DES) exposure alters Hox gene expression in the developing mullerian system. FASEB J 14:1101–1108PubMedGoogle Scholar
  18. 18.
    Smith CC, Taylor HS (2007) Xenoestrogen exposure imprints expression of genes (Hoxa10) required for normal uterine development. FASEB J 21:239–246CrossRefPubMedGoogle Scholar
  19. 19.
    Ma L, Benson GV, Lim H, Dey SK, Maas RL (1998) Abdominal B (AbdB) Hoxa genes: regulation in adult uterus by estrogen and progesterone and repression in mullerian duct by the synthetic estrogen diethylstilbestrol (DES). Dev Biol 197:141–154CrossRefPubMedGoogle Scholar
  20. 20.
    Vandenberg LN, Maffini MV, Wadia PR, Sonnenschein C, Rubin BS, Soto AM (2007) Exposure to environmentally relevant doses of the xenoestrogen bisphenol-A alters development of the fetal mouse mammary gland. Endocrinology 148:116–127CrossRefPubMedGoogle Scholar
  21. 21.
    Munoz-de-Toro M, Markey CM, Wadia PR, Luque EH, Rubin BS, Sonnenschein C, Soto AM (2005) Perinatal exposure to bisphenol-A alters peripubertal mammary gland development in mice. Endocrinology 146:4138–4147CrossRefPubMedGoogle Scholar
  22. 22.
    Murray TJ, Maffini MV, Ucci AA, Sonnenschein C, Soto AM (2007) Induction of mammary gland ductal hyperplasias and carcinoma in situ following fetal bisphenol A exposure. Reprod Toxicol 23:383–390CrossRefPubMedGoogle Scholar
  23. 23.
    Durando M, Kass L, Piva J, Sonnenschein C, Soto AM, Luque EH, Munoz-de-Toro M (2007) Prenatal bisphenol A exposure induces preneoplastic lesions in the mammary gland in Wistar rats. Environ Health Perspect 115:80–86CrossRefPubMedGoogle Scholar
  24. 24.
    Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang Y, Cao R, Wang L, Jones RS (2004) Mechanism of Polycomb group gene silencing. Cold Spring Harb Symp Quant Biol 69:309–317CrossRefPubMedGoogle Scholar
  26. 26.
    Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298:1039–1043CrossRefPubMedGoogle Scholar
  27. 27.
    Simon JA, Lange CA (2008) Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res 647:21–29PubMedGoogle Scholar
  28. 28.
    Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev 16:2893–2905CrossRefPubMedGoogle Scholar
  29. 29.
    Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, Jenuwein T (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406:593–599CrossRefPubMedGoogle Scholar
  30. 30.
    Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, Rubin MA, Chinnaiyan AM (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629CrossRefPubMedGoogle Scholar
  31. 31.
    Croonquist PA, Van Ness B (2005) The polycomb group protein enhancer of zeste homolog 2 (EZH 2) is an oncogene that influences myeloma cell growth and the mutant ras phenotype. Oncogene 24:6269–6280CrossRefPubMedGoogle Scholar
  32. 32.
    Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, Ghosh D, Sewalt RG, Otte AP, Hayes DF, Sabel MS, Livant D, Weiss SJ, Rubin MA, Chinnaiyan AM (2003) EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci U S A 100:11606–11611CrossRefPubMedGoogle Scholar
  33. 33.
    Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA, Salvesen HB, Otte AP, Akslen LA (2006) EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol 24:268–273CrossRefPubMedGoogle Scholar
  34. 34.
    Collett K, Eide GE, Arnes J, Stefansson IM, Eide J, Braaten A, Aas T, Otte AP, Akslen LA (2006) Expression of enhancer of zeste homologue 2 is significantly associated with increased tumor cell proliferation and is a marker of aggressive breast cancer. Clin Cancer Res 12:1168–1174CrossRefPubMedGoogle Scholar
  35. 35.
    Raaphorst FM, Meijer CJ, Fieret E, Blokzijl T, Mommers E, Buerger H, Packeisen J, Sewalt RA, Otte AP, van Diest PJ (2003) Poorly differentiated breast carcinoma is associated with increased expression of the human polycomb group EZH2 gene. Neoplasia 5:481–488PubMedGoogle Scholar
  36. 36.
    Cha TL, Zhou BP, Xia W, Wu Y, Yang CC, Chen CT, Ping B, Otte AP, Hung MC (2005) Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science 310:306–310CrossRefPubMedGoogle Scholar
  37. 37.
    Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J, Eden E, Yakhini Z, Ben-Shushan E, Reubinoff BE, Bergman Y, Simon I, Cedar H (2007) Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39:232–236CrossRefPubMedGoogle Scholar
  38. 38.
    Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, Bollen M, Esteller M, Di Croce L, de Launoit Y, Fuks F (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439:871–874CrossRefPubMedGoogle Scholar
  39. 39.
    Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L, Mohammad HP, Chen W, Daniel VC, Yu W, Berman DM, Jenuwein T, Pruitt K, Sharkis SJ, Watkins DN, Herman JG, Baylin SB (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39:237–242CrossRefPubMedGoogle Scholar
  40. 40.
    Zeidler M, Varambally S, Cao Q, Chinnaiyan AM, Ferguson DO, Merajver SD, Kleer CG (2005) The Polycomb group protein EZH2 impairs DNA repair in breast epithelial cells. Neoplasia 7:1011–1019CrossRefPubMedGoogle Scholar
  41. 41.
    Ding L, Erdmann C, Chinnaiyan AM, Merajver SD, Kleer CG (2006) Identification of EZH2 as a molecular marker for a precancerous state in morphologically normal breast tissues. Cancer Res 66:4095–4099CrossRefPubMedGoogle Scholar
  42. 42.
    Bromer JG, Wu J, Zhou Y, Taylor HS (2009) Hypermethylation of homeobox A10 by in utero diethylstilbestrol exposure: an epigenetic mechanism for altered developmental programming. Endocrinology 150:3376–3382CrossRefPubMedGoogle Scholar
  43. 43.
    Bromer J, Zhou Y, Taylor M, Doherty L, Taylor H (2010) Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response. FASEB J. PMID: 20181937Google Scholar
  44. 44.
    Soule HD, Vazguez J, Long A, Albert S, Brennan M (1973) A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst 51:1409–1416PubMedGoogle Scholar
  45. 45.
    Brooks SC, Locke ER, Soule HD (1973) Estrogen receptor in a human cell line (MCF-7) from breast carcinoma. J Biol Chem 248:6251–6253PubMedGoogle Scholar
  46. 46.
    Bromer JG, Zhou Y, Taylor MB, Taylor HS (2009) Bisphenol-A (BPA) exposure in utero leads to epigenetic changes and altered developmental programming. The Endocrine Society, WashingtonGoogle Scholar
  47. 47.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  48. 48.
    McLachlan JA, Newbold RR, Bullock BC (1980) Long-term effects on the female mouse genital tract associated with prenatal exposure to diethylstilbestrol. Cancer Res 40:3988–3999PubMedGoogle Scholar
  49. 49.
    Newbold RR, Padilla-Banks E, Jefferson WN (2006) Adverse effects of the model environmental estrogen diethylstilbestrol are transmitted to subsequent generations. Endocrinology 147:S11–S17CrossRefPubMedGoogle Scholar
  50. 50.
    Newbold RR, Jefferson WN, Grissom SF, Padilla-Banks E, Snyder RJ, Lobenhofer EK (2007) Developmental exposure to diethylstilbestrol alters uterine gene expression that may be associated with uterine neoplasia later in life. Mol Carcinog 46:783–796CrossRefPubMedGoogle Scholar
  51. 51.
    Markey CM, Wadia PR, Rubin BS, Sonnenschein C, Soto AM (2005) Long-term effects of fetal exposure to low doses of the xenoestrogen bisphenol-A in the female mouse genital tract. Biol Reprod 72:1344–1351CrossRefPubMedGoogle Scholar
  52. 52.
    Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054CrossRefPubMedGoogle Scholar
  53. 53.
    Yang X, Karuturi RK, Sun F, Aau M, Yu K, Shao R, Miller LD, Tan PB, Yu Q (2009) CDKN1C (p57) is a direct target of EZH2 and suppressed by multiple epigenetic mechanisms in breast cancer cells. PLoS One 4:e5011CrossRefPubMedGoogle Scholar
  54. 54.
    Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, Lochner D, Birchmeier W (1991) E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol 113:173–185CrossRefPubMedGoogle Scholar
  55. 55.
    Cao Q, Yu J, Dhanasekaran SM, Kim JH, Mani RS, Tomlins SA, Mehra R, Laxman B, Cao X, Kleer CG, Varambally S, Chinnaiyan AM (2008) Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 27:7274–7284CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Leo F. Doherty
    • 1
  • Jason G. Bromer
    • 1
  • Yuping Zhou
    • 1
  • Tamir S. Aldad
    • 1
  • Hugh S. Taylor
    • 1
  1. 1.Department of Obstetrics, Gynecology, and Reproductive SciencesYale University School of MedicineNew HavenUSA

Personalised recommendations