Hormones and Cancer

, Volume 1, Issue 1, pp 34–43 | Cite as

Specific Overexpression of Cyclin E·CDK2 in Early Preinvasive and Primary Breast Tumors in Female ACI Rats Induced by Estrogen

  • S. John Weroha
  • Wilma L. Lingle
  • Yan Hong
  • Sara Antonia Li
  • Jonathan J. LiEmail author


Overexpressed Aurora A, amplified centrosomes, and aneuploidy are salient features of estrogen-induced mammary preinvasive lesions and tumors in female August–Copenhagen Irish (ACI) rats. Intimately involved in these events are cyclins and their associated cyclin-dependent kinase (CDK) partners. Cyclin E1·CDK2 overexpression plays an important dual role in late G1/S phase of the cell cycle in cancer cells. It increases DNA replication providing growth advantage to cancer cells and facilitates aberrant centrosome duplication, generating chromosomal instability and aneuploidy leading to tumor development. Presented herein, a 24.0- and 45.0-fold elevation in cyclin E1 and CDK2 was found in 17β-estradiol (E2)-induced ACI rat mammary tumors (MTs), respectively. Cyclin E·CDK2 positive staining was confined to the large round cells found within focal dysplasias, ductal carcinomas in situ, and invasive MTs. Co-immunoprecipitation and in vitro kinase activity of these tumors revealed that these cell cycle entities are functional. When mammary tissue derived from untreated normal, E2-induced hyperplasia and primary tumors were normalized to cyclin E1 levels, low molecular weight (LMW) cyclin E1 forms (33- and 45-kDa) were detected in all of these tissue groups. Moreover, increasing concentrations of protease inhibitor in tissue lysates resulted in a marked reduction of LMW forms, indicating that the presence of cyclin E1 LMW forms can be markedly reduced. Significant increases in cyclin E1 mRNA (2.1-fold) were detected in primary ACI rat E2-induced breast tumors, and quantitative real-time polymerase chain reaction revealed a 20% amplification of the cyclin E1 gene (CCNE1). Collectively, these results support the involvement of cyclin E1·CDK2 in centrosome overduplication during each stage of E2-induced mammary tumorigenesis.


Cyclin E1·CDK2 Estrogen ACI rat Breast cancer 



Breast cancer


Cyclin E1 gene


Cyclin-dependent kinase


Ductal carcinoma in situ




Estrogen receptor α


Low molecular weight


Mammary tumor


Progesterone receptor


Standard error



The authors acknowledge the expert clerical assistance of Ms. Lauren Overton from the University of Kansas Medical Center, Department of Pharmacology.




  1. 1.
    The American Cancer Society (2008) Cancer facts & figures 2008. The American Cancer Society, New YorkGoogle Scholar
  2. 2.
    Yang XR, Sherman ME, Rimm DL, Lissowska J, Brinton LA, Peplonska B, Hewitt SM, Anderson WF, Szeszenia-Dabrowska N, Bardin-Mikolajczak A et al (2007) Differences in risk factors for breast cancer molecular subtypes in a population-based study. Cancer Epidemiol Biomarkers Prev 16:439–443CrossRefPubMedGoogle Scholar
  3. 3.
    Surveillance, Epidemiology, and End Results (SEER) Oncogene. 2008 Feb 21; 27(9):1253-1262. Program ( SEER*Stat, Database: Incidence- SEER17 Reqs Limited-Use, Nov. 2006 Sub (2000-2004) Linked to County, Attributes- Total US 1969-2004 Counties, National Cancer Institute, DCCPS, Surveillance, Research Program, Cancer Statistics Branch, released April 2007. Based on the November 2006 submission
  4. 4.
    Alberts SR, Ingle JN, Roche PR, Cha SS, Wold LE, Farr GH Jr, Krook JE, Wieand HS (1996) Comparison of estrogen receptor determinations by a biochemical ligand-binding assay and immunohistochemical staining with monoclonal antibody ER1D5 in females with lymph node positive breast carcinoma entered on two prospective clinical trials. Cancer 78:764–772CrossRefPubMedGoogle Scholar
  5. 5.
    Li CI, Daling JR, Malone KE (2003) Incidence of invasive breast cancer by hormone receptor status from 1992 to 1998. J Clin Oncol 21:28–34CrossRefPubMedGoogle Scholar
  6. 6.
    Arnerlov C, Emdin SO, Cajander S, Bengtsson NO, Tavelin B, Roos G (2001) Intratumoral variations in DNA ploidy and s-phase fraction in human breast cancer. Anal Cell Pathol 23:21–28PubMedGoogle Scholar
  7. 7.
    Wiesener B, Hauser-Kronberger CE, Zipperer E, Dietze O, Menzel C, Hacker GW (1998) p34cdc2 in invasive breast cancer: relationship to DNA content, Ki67 index and c-erbB-2 expression. Histopathology 33:522–530CrossRefPubMedGoogle Scholar
  8. 8.
    Katayama H, Brinkley WR, Sen S (2003) The Aurora kinases: role in cell transformation and tumorigenesis. Cancer Metastasis Rev 22:451–464CrossRefPubMedGoogle Scholar
  9. 9.
    Marumoto T, Zhang D, Saya H (2005) Aurora-A—a guardian of poles. Nat Rev Cancer 5:42–50CrossRefPubMedGoogle Scholar
  10. 10.
    Li JJ, Li SA (2006) Mitotic kinases: the key to duplication, segregation, and cytokinesis errors, chromosomal instability, and oncogenesis. Pharmacol Ther 111:974–984CrossRefPubMedGoogle Scholar
  11. 11.
    Tanaka T, Kimura M, Matsunaga K, Fukada D, Mori H, Okano Y (1999) Centrosomal kinase AIK1 is overexpressed in invasive ductal carcinoma of the breast. Cancer Res 59:2041–2044PubMedGoogle Scholar
  12. 12.
    Lingle WL, Barrett SL, Negron VC, D'Assoro AB, Boeneman K, Liu W, Whitehead CM, Reynolds C, Salisbury JL (2002) Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci USA 99:1978–1983CrossRefPubMedGoogle Scholar
  13. 13.
    Perez-Roger I, Solomon DL, Sewing A, Land H (1997) Myc activation of cyclin E/Cdk2 kinase involves induction of cyclin E gene transcription and inhibition of p27(Kip1) binding to newly formed complexes. Oncogene 14:2373–2381CrossRefPubMedGoogle Scholar
  14. 14.
    Butt AJ, Caldon CE, McNeil CM, Swarbrick A, Musgrove EA, Sutherland RL (2008) Cell cycle machinery: links with genesis and treatment of breast cancer. Adv Exp Med Biol 630:189–205CrossRefPubMedGoogle Scholar
  15. 15.
    Fukasawa K (2008) P53, cyclin-dependent kinase and abnormal amplification of centrosomes. Biochim Biophys Acta 1786:15–23PubMedGoogle Scholar
  16. 16.
    Hinchcliffe EH, Li C, Thompson EA, Maller JL, Sluder G (1999) Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science 283:851–854CrossRefPubMedGoogle Scholar
  17. 17.
    Matsumoto Y, Hayashi K, Nishida E (1999) Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr Biol 9:429–432CrossRefPubMedGoogle Scholar
  18. 18.
    Ferguson RL, Maller JL (2008) Cyclin E-dependent localization of MCM5 regulates centrosome duplication. J Cell Sci 121:3224–3232CrossRefPubMedGoogle Scholar
  19. 19.
    Duensing A, Liu Y, Perdreau SA, Kleylein-Sohn J, Nigg EA, Duensing S (2007) Centriole overduplication through the concurrent formation of multiple daughter centrioles at single maternal templates. Oncogene 26:6280–6288CrossRefPubMedGoogle Scholar
  20. 20.
    Okuda M, Horn HF, Tarapore P, Tokuyama Y, Smulian AG, Chan PK, Knudsen ES, Hofmann IA, Snyder JD, Bove KE et al (2000) Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell 103:127–140CrossRefPubMedGoogle Scholar
  21. 21.
    Chen Z, Indjeian VB, McManus M, Wang L, Dynlacht BD (2002) CP110, a cell cycle-dependent CDK substrate, regulates centrosome duplication in human cells. Dev Cell 3:339–350CrossRefPubMedGoogle Scholar
  22. 22.
    Fisk HA, Winey M (2001) The mouse Mps1p-like kinase regulates centrosome duplication. Cell 106:95–104CrossRefPubMedGoogle Scholar
  23. 23.
    Nishimura T, Takahashi M, Kim HS, Mukai H, Ono Y (2005) Centrosome-targeting region of CG-NAP causes centrosome amplification by recruiting cyclin E-cdk2 complex. Genes Cells 10:75–86CrossRefPubMedGoogle Scholar
  24. 24.
    Basto R, Brunk K, Vinadogrova T, Peel N, Franz A, Khodjakov A, Raff JW (2008) Centrosome amplification can initiate tumorigenesis in flies. Cell 133:1032–1042CrossRefPubMedGoogle Scholar
  25. 25.
    Li JJ, Papa D, Davis MF, Weroha SJ, Aldaz CM, El-Bayoumy K, Ballenger J, Tawfik O, Li SA (2002) Ploidy differences between hormone- and chemical carcinogen-induced rat mammary neoplasms: comparison to invasive human ductal breast cancer. Mol Carcinog 33:56–65CrossRefPubMedGoogle Scholar
  26. 26.
    Li JJ, Weroha SJ, Lingle WL, Papa D, Salisbury JL, Li SA (2004) Estrogen mediates Aurora-A overexpression, centrosome amplification, chromosomal instability, and breast cancer in female ACI rats. Proc Natl Acad Sci USA 101:18123–18128CrossRefPubMedGoogle Scholar
  27. 27.
    Li JJ, Li SA (2007) Deciphering the conundrum of estrogen-driven breast cancer: Aurora kinase deregulation. In: Melmed SRH, Chanson P, Christen Y (eds) Hormonal control of cell cycle. Springer, Heidelberg, pp 49–62Google Scholar
  28. 28.
    Baker GL, Landis MW, Hinds PW (2005) Multiple functions of D-type cyclins can antagonize pRb-mediated suppression of proliferation. Cell Cycle 4:330–338PubMedGoogle Scholar
  29. 29.
    Nelsen CJ, Kuriyama R, Hirsch B, Negron VC, Lingle WL, Goggin MM, Stanley MW, Albrecht JH (2005) Short term cyclin D1 overexpression induces centrosome amplification, mitotic spindle abnormalities, and aneuploidy. J Biol Chem 280:768–776PubMedGoogle Scholar
  30. 30.
    Page DL, Dupont WD (1990) Anatomic markers of human premalignancy and risk of breast cancer. Cancer 66:1326–1335CrossRefPubMedGoogle Scholar
  31. 31.
    Spruck C, Sun D, Fiegl H, Marth C, Mueller-Holzner E, Goebel G, Widschwendter M, Reed SI (2006) Detection of low molecular weight derivatives of cyclin E1 is a function of cyclin E1 protein levels in breast cancer. Cancer Res 66:7355–7360CrossRefPubMedGoogle Scholar
  32. 32.
    Akli S, Zheng PJ, Multani AS, Wingate HF, Pathak S, Zhang N, Tucker SL, Chang S, Keyomarsi K (2004) Tumor-specific low molecular weight forms of cyclin E induce genomic instability and resistance to p21, p27, and antiestrogens in breast cancer. Cancer Res 64:3198–3208CrossRefPubMedGoogle Scholar
  33. 33.
    Bodin L, Beaune PH, Loriot MA (2005) Determination of cytochrome P450 2D6 (CYP2D6) gene copy number by real-time quantitative PCR. J Biomed Biotechnol 3:248–253CrossRefGoogle Scholar
  34. 34.
    Weroha SJ, Li SA, Tawfik O, Li JJ (2006) Overexpression of cyclins D1 and D3 during estrogen-induced breast oncogenesis in female ACI rats. Carcinogenesis 27:491–498CrossRefPubMedGoogle Scholar
  35. 35.
    Wang X-J, Greenhalgh DA, Jiang A, He D, Zhong L, Brinkley BR, Toop DR (1998) Analysis of centrosome abnormalities and angiogenesis in epidermal-target p53172H mutant and p53-knockout mice after chemical carcinogenesis: evidence for a gain of function. Mol Carcinogenesis 23:185–192CrossRefGoogle Scholar
  36. 36.
    Neben K, Tews B, Wrobel G, Hahn M, Kokocinski F, Giesecke C, Krause U, Ho AD, Kramer A, Lichter P (2004) Gene expression patterns in acute myeloid leukemia correlate with centrosome aberrations and numerical chromosome changes. Oncogene 23:2379–2384CrossRefPubMedGoogle Scholar
  37. 37.
    Russell A, Thompson MA, Hendley J, Trute L, Armes J, Germain D (1999) Cyclin D1 and D3 associate with the SCF complex and are coordinately elevated in breast cancer. Oncogene 18:1983–1991CrossRefPubMedGoogle Scholar
  38. 38.
    Bartkova J, Zemanova M, Bartek J (1996) Abundance and subcellular localisation of cyclin D3 in human tumours. Int J Cancer 65:323–327CrossRefPubMedGoogle Scholar
  39. 39.
    Keyomarsi K, O'Leary N, Molnar G, Lees E, Fingert HJ, Pardee AB (1994) Cyclin E, a potential prognostic marker for breast cancer. Cancer Res 54:380–385PubMedGoogle Scholar
  40. 40.
    Scott KA, Walker RA (1997) Lack of cyclin E immunoreactivity in non-malignant breast and association with proliferation in breast cancer. Br J Cancer 76:1288–1292PubMedGoogle Scholar
  41. 41.
    Keyomarsi K, Pardee AB (1993) Redundant cyclin overexpression and gene amplification in breast cancer cells. Proc Natl Acad Sci U S A 90:1112–1116CrossRefPubMedGoogle Scholar
  42. 42.
    Enders GH (2002) Cyclins in breast cancer: too much of a good thing. Breast Cancer Res 4:145–147CrossRefPubMedGoogle Scholar
  43. 43.
    Courjal F, Louason G, Speiser P, Katsaros D, Zeillinger R, Theillet C (1996) Cyclin gene amplification and overexpression in breast and ovarian cancers: evidence for the selection of cyclin D1 in breast and cyclin E in ovarian tumors. Int J Cancer 69:247–253CrossRefPubMedGoogle Scholar
  44. 44.
    Schraml P, Bucher C, Bissig H, Nocito A, Haas P, Wilber K, Seelig S, Kononen J, Mihatsch MJ, Dirnhofer S et al (2003) Cyclin E overexpression and amplification in human tumours. J Pathol 200:375–382CrossRefPubMedGoogle Scholar
  45. 45.
    Strohmaier H, Spruck CH, Kaiser P, Won KA, Sangfelt O, Reed SI (2001) Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature 413:316–322CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • S. John Weroha
    • 1
    • 2
    • 4
  • Wilma L. Lingle
    • 3
  • Yan Hong
    • 1
    • 2
  • Sara Antonia Li
    • 1
    • 2
  • Jonathan J. Li
    • 1
    • 2
    Email author
  1. 1.Hormonal Oncogenesis LaboratoryUniversity of Kansas Cancer CenterKansasUSA
  2. 2.Department of Pharmacology, Toxicology, and TherapeuticsUniversity of Kansas Medical CenterKansasUSA
  3. 3.The Tumor Biology Program, Division of Experimental PathologyMayo Clinic and FoundationRochesterUSA
  4. 4.Mayo Graduate School, Mayo Clinic and FoundationRochesterUSA

Personalised recommendations