Advertisement

Mindfulness

, Volume 9, Issue 5, pp 1319–1329 | Cite as

Brain Activity in Mindfulness Depends on Experience: a Meta-Analysis of fMRI Studies

  • Gina Falcone
  • Matthew Jerram
ORIGINAL PAPER

Abstract

Mindfulness and mindful meditation have become widely used approaches in clinical psychology. The growing use of these techniques has increased demand in research examining the foundations of mindfulness and its treatment efficacy. In particular, understanding the neurological mechanisms associated with mindfulness practice is an important area of research. To better understand these mechanisms, this meta-analytic study examines brain activity associated with practicing mindful meditation. Further, we examined the influence of experience on neural correlates by analyzing studies utilizing naive participants separately from studies examining experienced meditators. Literature review was used to identify studies examining mindful mediation using fMRI. Twenty-one studies were selected, with a total of 22 contrasts. Eleven contrasts used novice participants and 12 used experienced participants. Using activation likelihood estimate methods, we found that, across all contrasts, foci of consistent activity related to mindful meditation were found in the frontal regions, anterior cingulate, and insula. In contrasts utilizing novice participants, a focus was found in the insula. Foci in the medial frontal gyrus and globus pallidus were observed in the experienced participant contrasts. These findings are consistent with the literature on cognitive and motor skill learning and support the idea that mindfulness is a learnable skill.

Keywords

Mindfulness Meditation fMRI Neuroimaging Meta-analysis Activation likelihood estimation Skill learning 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

References

  1. Ainsworth, B., Eddershaw, R., Meron, D., Baldwin, D., & Garner, M. (2013). The effect of focused attention and open monitoring meditation on attention network function in healthy volunteers. Psychiatry Research, 210(3), 1226–1231.  https://doi.org/10.1016/j.psychres.2013.09.002.CrossRefPubMedGoogle Scholar
  2. Allen, M., Dietz, M., Blair, K., van Beek, M., Rees, G., Vestergaard-Poulsen, P., & …, Roepstorff, A. (2012). Cognitive-affective neural plasticity following active-controlled mindfulness intervention. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32(44), 15601–15610.  https://doi.org/10.1523/jneurosci.2957-12.2012.
  3. Baer, R. (2003). Mindfulness training as a clinical intervention: A conceptual and empirical review. Clinical Psychology: Science and Practice, 10(2), 125–143.  https://doi.org/10.1093/clipsy.bpg015.Google Scholar
  4. Bærentsen, K., Stødkilde-Jørgensen, B., Sommerlund, H., Hartmann, B., Damsgaard-Madsen, T., Fosnæs, J., & Green, M. (2010). An investigation of brain processes supporting meditation. Cognitive Processing, 11(1), 57–84.  https://doi.org/10.1007/s10339-009-0342-3.CrossRefPubMedGoogle Scholar
  5. Bishop, S., Lau, M., Shapiro, S., Carlson, L., Anderson, N., Carmody, J., …, Devins, G. (2004). Mindfulness: A proposed operational definition. Clinical Psychology: Science and Practice, 11(3), 230–241.  https://doi.org/10.1093/clipsy.bph077.
  6. Boccia, M., Piccardi, L., & Guariglia, P. (2014). The meditative mind: A comprehensive meta-analysis of MRI studies. BioMed Research International, 2015, 1–11.  https://doi.org/10.1155/2015/419808.CrossRefGoogle Scholar
  7. Brand, S., Holsboer-Trachsler, E., Naranjo, J., & Schmidt, S. (2012). Influence of mindfulness practice on cortisol and sleep in long-term and short-term meditators. Neuropsychobiology, 201(65), 109–118.  https://doi.org/10.1159/000330362.CrossRefGoogle Scholar
  8. Brefczynski-Lewis, J. A., Lutz, A., Schaefer, H. S., Levinson, D. B., & Davidson, R. J. (2007). Neural correlates of attentional expertise in long-term meditation practitioners. Proceedings of the National Academy of Sciences of the United States of America, 104(27), 11483–11488.  https://doi.org/10.1073/pnas.0606552104.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cahn, B., & Polich, J. (2006). Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychological Bulletin, 132(2), 180–211.  https://doi.org/10.1037/0033-2909.132.2.180.CrossRefPubMedGoogle Scholar
  10. Chein, J., & Schneider, W. (2005). Neuroimaging studies of practice-related change: fMRI and metaanalytic evidence of a domain-general control network for learning. Cognitive Brain Research, 25(3), 607–623.Google Scholar
  11. Chersi, F., Mirolli, M., Pezzulo, G., & Baldassarre, G. (2013). A spiking neuron model of the cortico-basal ganglia circuits for goal-directed and habitual action learning. Neural Networks: The Official Journal of the International Neural Network Society, 41, 212–224.  https://doi.org/10.1016/j.neunet.2012.11.009.CrossRefGoogle Scholar
  12. Chiesa, A., & Malinowski, P. (2011). Mindfulness-based approaches: Are they all the same? Journal of Clinical Psychology, 67(4), 404–424.  https://doi.org/10.1002/jclp.20776.CrossRefPubMedGoogle Scholar
  13. Chiesa, A., & Serretti, A. (2010). A systematic review of neurobiological and clinical features of mindfulness meditations. Psychological Medicine, 40(8), 1239–1252.  https://doi.org/10.1017/S0033291709991747.CrossRefPubMedGoogle Scholar
  14. Chiesa, A., Calati, R., & Serretti, A. (2011). Does mindfulness training improve cognitive abilities? A systematic review of neuropsychological findings. Clinical Psychology Review, 31(3), 449–464.  https://doi.org/10.1016/j.cpr.2010.11.003.CrossRefPubMedGoogle Scholar
  15. Creswell, J., Way, B. M., Eisenberger, N. I., & Lieberman, M. D. (2007). Neural correlates of dispositional mindfulness during affect labeling. Psychosomatic Medicine, 69(6), 560–565.  https://doi.org/10.1097/PSY.0b013e3180f6171f.CrossRefPubMedGoogle Scholar
  16. Dahlin, E., Bäckman, L., Neely, A. S., & Nyberg, L. (2009). Training of the executive component of working memory: Subcortical areas mediate transfer effects. Restorative Neurology and Neuroscience, 27(5), 405–419.  https://doi.org/10.3233/RNN-2009-0492.PubMedGoogle Scholar
  17. Davanger, S., Holen, A., Ellingsen, O., & Hugdahl, K. (2010). Meditation-specific prefrontal cortical activation during ACEM meditation: An fMRI study. Perceptual and Motor Skills, 111(1), 291–306.  https://doi.org/10.2466/02.04.22.PMS.111.4.291-306.CrossRefPubMedGoogle Scholar
  18. Dickenson, J., Berkman, E., Arch, J., & Lieberman, M. (2013). Neural correlates of focused attention during a brief mindfulness induction. Social Cognitive and Affective Neuroscience, 8(1), 40–47.  https://doi.org/10.1093/scan/nss030.CrossRefPubMedGoogle Scholar
  19. Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & May, A. (2004). Neuroplasticity: Changes in grey matter induced by training. Nature, 427(6972), 311–312.CrossRefPubMedGoogle Scholar
  20. Dum, R., Levinthal, D., & Strick, P. (2016). Motor, cognitive, and affective areas of the cerebral cortex influence the adrenal medulla. Proceedings of the National Academy of Sciences of Sciences of the United States of America, 113(35), 9922–9927.  https://doi.org/10.1073/pnas.1605044113.CrossRefGoogle Scholar
  21. Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30(9), 2907–2926.  https://doi.org/10.1002/hbm.20718.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Eickhoff, S. B., Bzdok, D., Laird, A. R., Kurth, F., & Fox, P. T. (2012). Activation likelihood estimation revisited. NeuroImage, 59(3), 2349–2361.  https://doi.org/10.1016/j.neuroimage.2011.09.017.CrossRefPubMedGoogle Scholar
  23. Engstrom, M., Pihlsgard, J., Lundberg, P., & Soderfeldt, B. (2010). Functional magnetic resonance imaging of hippocampal activation during silent mantra meditation. Journal of Alternative and Complementary Medicine, 16(12), 1253–1258.CrossRefPubMedGoogle Scholar
  24. Farb, N. S., Segal, Z. V., Mayberg, H., Bean, J., McKeon, D., Fatima, Z., & Anderson, A. K. (2007). Attending to the present: Mindfulness meditation reveals distinct neural modes of self-reference. Social Cognitive and Affective Neuroscience, 2(4), 313–322.  https://doi.org/10.1093/scan/nsm030.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Farb, N. S., Anderson, A. K., Mayberg, H., Bean, J., McKeon, D., & Segal, Z. V. (2010). Minding one’s emotions: Mindfulness training alters the neural expression of sadness. Emotion (Washington, D.C.), 10(1), 25–33.  https://doi.org/10.1037/a0017151.CrossRefGoogle Scholar
  26. Farb, N. S., Segal, Z. V., & Anderson, A. K. (2012). Mindfulness meditation training alters cortical representations of interoceptive attention. Social Cognitive and Affective Neuroscience, 8(1), 15–26.  https://doi.org/10.1093/scan/nss066.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Fox, K. C., Nijeboer, S., Dixon, M. L., Floman, J. L., Ellamil, M., Rumak, S. P., & …, Christoff, K. (2014). Is meditation associated with altered brain structure? A systematic review and meta-analysis of morphometric neuroimaging in meditation practitioners. Neuroscience and Biobehavioral Reviews, 43, 48–73.  https://doi.org/10.1016/j.neubiorev.2014.03.016.
  28. Gard, T., Holzel, B., Sack, A., Hempel, H., Lazar, S., Vaitl, D., & …, Hoelzel, T. (2012). Pain attenuation through mindfulness is associated with decreased cognitive control and increased sensory processing in the brain. Cerebral Cortex, 22(11), 2692–2702.Google Scholar
  29. Goldin, P., & Gross, J. (2010). Effects of mindfulness-based stress reduction (MBSR) on emotion regulation in social anxiety disorder. Emotion (Washington, D.C.), 10(1), 83–91.CrossRefGoogle Scholar
  30. Grossman, P., Niemann, L., Schmidt, S., & Walach, H. (2004). Mindfulness-based stress reduction and health benefits: A meta-analysis. Journal of Psychosomatic Research, 57(1), 35–43.  https://doi.org/10.1016/S0022-3999(03)00573-7.CrossRefPubMedGoogle Scholar
  31. Hasenkamp, W., Wilson-Mendenhall, C., Duncan, E., & Barsalou, L. (2012). Mind wandering and attention during focused meditation: A fine-grained temporal analysis of fluctuating cognitive states. NeuroImage, 59(1), 750–760.  https://doi.org/10.1016/j.neuroimage.2011.07.008.CrossRefPubMedGoogle Scholar
  32. Hölzel, B. K., Ott, U., Hempel, H., Hackl, A., Wolf, K., Stark, R., & Vaitl, D. (2007). Differential engagement of anterior cingulate and adjacent medial frontal cortex in adept meditators and non-meditators. Neuroscience Letters, 421(1), 16–21.CrossRefPubMedGoogle Scholar
  33. Hölzel, B. K., Carmody, J., Vangel, M., Congleton, C., Terramsetti, S. M., Gard, T., & Lazar, S. W. (2011a). Mindfulness practice leads to increase in regional brain grey matter density. Psychiatry Research: Neuroimaging Section, 191(1), 36–43.  https://doi.org/10.1016/j.pscychresns.2010.08.006.CrossRefGoogle Scholar
  34. Hölzel, B. K., Lazar, S. W., Gard, T., Schuman-Olivier, Z., Vago, D. R., & Ott, U. (2011b). How does mindfulness meditation work? Proposing mechanisms of action from a conceptual and neural perspective. Perspectives on Psychological Science, 6(6), 537–559.  https://doi.org/10.1177/1745691611419671.CrossRefPubMedGoogle Scholar
  35. Ives-Deliperi, V. L., Solms, M., & Meintjes, E. M. (2011). The neural substrates of mindfulness: An fMRI investigation. Social Neuroscience, 6(3), 231–242.  https://doi.org/10.1080/17470919.2010.513495.CrossRefPubMedGoogle Scholar
  36. Kirk, U., Brown, K., & Downar, J. (2015). Adaptive neural reward processing during a nticipation and receipt of monetary rewards in mindfulness meditators. Social Cognitive and Affective Neuroscience, 10(5), 752–759.CrossRefPubMedGoogle Scholar
  37. Kurth, F., Zilles, K., Fox, P., Laird, T., & Eickhoff, A. (2010). A link between the systems: Functional differentiation and integration within the human insula revealed by meta-analysis. Brain Structure and Function, 214(5), 519–534.CrossRefPubMedGoogle Scholar
  38. Laird, A. R., Lancaster, J. L., & Fox, P. T. (2005). BrainMap: The social evolution of a functional neuroimaging database. Neuroinformatics, 3(1), 65–78.CrossRefPubMedGoogle Scholar
  39. Lancaster, J., Tordesillas-Gutierrez, D., Martinez, M., Salinas, F., Evans, A., Zilles, K., Mazziotta, J., & Fox, P. (2007). Bias Between MNI and Talairach Coordinates Analyzed Using the ICBM-152 Brain Template. Human Brain Mapping, 28(11), 1194–1205.Google Scholar
  40. Lazar, S. W., Bush, G., Gollub, R. L., Fricchione, G. L., Khalsa, G., & Benson, H. (2000). Functional brain mapping of the relaxation response and meditation. Neuroreport, 11(7), 1581–1585.CrossRefPubMedGoogle Scholar
  41. Lazar, S. W., Kerr, C. E., Wasserman, R. H., Gray, J. R., Greve, D. N., Treadway, M. T., & …, Fischl, B. (2005). Meditation experience is associated with increased cortical thickness. Neuroreport, 16(17), 1893–1897.Google Scholar
  42. Lomas, T., Ivtzan, I., & Fu, C. (2015). A systematic review of the neurophysiology of mindfulness on EEG oscillations. Neuroscience and Biobehavioral Reviews, 57(1), 401–410.CrossRefPubMedGoogle Scholar
  43. Lutz, A., Brefczynski-Lewis, J., Johnstone, T., & Davidson, R. J. (2008). Regulation of the neural circuitry of emotion by compassion meditation: Effects of meditative expertise. PLoS One, 3(3), e1897.  https://doi.org/10.1371/journal.pone.0001897.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lutz, A., Greischar, L., Perlman, D., & Davidson, R. (2009). BOLD signal in insula is differentially related to cardiac function during compassion meditation in experts vs. novices. NeuroImage, 47(3), 1038–1046.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lutz, A., McFarlin, D. R., Perlman, D. M., Salomons, T. V., & Davidson, R. J. (2013). Altered anterior insula activation during anticipation and experience of painful stimuli in expert meditators. NeuroImage, 64(1), 538–546.CrossRefPubMedGoogle Scholar
  46. Lutz, J., Herwig, U., Opialla, S., Hittmeyer, A., Jäncke, L., Rufer, M., & …, Brühl, A. B. (2014). Mindfulness and emotion regulation—An fMRI study. Social Cognitive and Affective Neuroscience, 9(6), 776–785.  https://doi.org/10.1093/scan/nst043.
  47. Malinowski, P. (2013). Neural mechanisms of attentional control in mindfulness meditation. Frontiers in Neuroscience, 7, 8.  https://doi.org/10.3389/fnins.2013.00008.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Manna, A., Raffone, A., Perrucci, M. G., Nardo, D., Ferretti, A., Tartaro, A., & …, Romani, G. L. (2010). Neural correlates of focused attention and cognitive monitoring in meditation. Brain Research Bulletin, 82(1), 46–56.Google Scholar
  49. Marchand, W. R. (2014). Neural mechanisms of mindfulness and meditation: Evidence from neuroimaging studies. World Journal of Radiology, 6(7), 471–479.  https://doi.org/10.4329/wjr.v6.i7.471.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Murakami, H., Katsunuma, R., Oba, K., Terasawa, Y., Motomura, Y., Mishima, K., & Moriguchi, Y. (2015). Neural networks for mindfulness and emotion suppression. PLoS One, 10(6), e0128005.  https://doi.org/10.1371/journal.pone.0128005.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Opialla, S., Lutz, J., Scherpiet, S., Hittmeyer, A., Jäncke, L., Rufer, M., & …, Brühl, A. (2015). Neural circuits of emotion regulation: A comparison of mindfulness-based and cognitive reappraisal strategies. European Archives of Psychiatry and Clinical Neuroscience, 265(1), 45–55.Google Scholar
  52. Oppenheimer, S., Gelb, A., Girvin, J., & Hachinski, V. (1992). Cardiovascular effects of human insular cortex stimulation. Neurology, 42(9), 1727–1732.CrossRefPubMedGoogle Scholar
  53. Patel, R., Spreng, R. N., & Turner, G. R. (2013). Functional brain changes following cognitive and motor skills training: A quantitative meta-analysis. Neurorehabilitation and Neural Repair, 27(3), 187–199.  https://doi.org/10.1177/1545968312461718.CrossRefPubMedGoogle Scholar
  54. Peressutti, C., Martín-González, J., & García-Manso, J. (2012). Does mindfulness meditation shift the cardiac autonomic nervous system to a highly orderly operational state? International Journal of Cardiology, 154(2), 210–212.  https://doi.org/10.1016/j.ijcard.2011.10.054.CrossRefPubMedGoogle Scholar
  55. Petersen, S., & Posner, M. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 73–89.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Posner, M., & Petersen, S. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42.CrossRefPubMedGoogle Scholar
  57. Posner, M., & Rothbart, M. (2007). Research on attention networks as a model for the integration of psychological science. Annual Review of Psychology, 58, 1–23.CrossRefPubMedGoogle Scholar
  58. Raz, A., & Buhle, J. (2006). Typologies of attentional networks. Nature Reviews. Neuroscience, 7(5), 367–379.PubMedGoogle Scholar
  59. Shapiro, S., Carlson, L., Astin, J., & Freedman, B. (2006). Mechanisms of mindfulness. Journal of Clinical Psychology, 62(3), 373–386.CrossRefPubMedGoogle Scholar
  60. Simkin, D. R., & Black, N. B. (2014). Meditation and mindfulness in clinical practice. Child and Adolescent Psychiatric Clinics of North America., 23(3), 487–534.CrossRefPubMedGoogle Scholar
  61. Sperduti, M., Delaveau, P., Fossati, P., & Nadel, J. (2011). Different brain structures related to self-and external-agency attribution: a brief review and meta-analysis. Brain Structure and Function, 216(2), 151–157.  https://doi.org/10.1007/s00429-010-0298-1.
  62. Tang, Y. Y., & Posner, M. (2009) Attention training and attention state training. Trends in Cognitive Neuroscience, 13(5), 222–227.Google Scholar
  63. Tang, Y., & Posner, M. (2014). Training brain networks and states. Trends in Cognitive Sciences, 18(7), 345–350.CrossRefPubMedGoogle Scholar
  64. Tang, Y., Lu, Q., Geng, X., Stein, E., Yang, Y., & Posner, M. (2010). Short-term meditation induces white matter changes in the anterior cingulate. Proceedings of the National Academy of Sciences of the United States of America, 107(35), 15649–15652.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Tang, Y., Lu, Q., Fan, M., Yang, Y., & Posner, M. (2012a). Mechanisms of white matter changes induced by meditation. Proceedings of the National Academy of Sciences of the United States, 109(26), 10570–10574.  https://doi.org/10.1073/pnas.1207817109.CrossRefGoogle Scholar
  66. Tang, Y., Rothbart, M., & Posner, M. (2012b). Neural correlates of establishing, maintaining, and switching brain states. Trends in Cognitive Sciences, 16(6), 330–337.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Tang, Y., Tang, R., & Posner, M. (2013). Brief meditation training induces smoking reduction. Proceedings of the National Academy of Sciences of the United States of America, 110(34), 13971–13975.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Tang, Y., Hölzel, B., & Posner, M. (2015). The neuroscience of mindfulness meditation. Nature Reviews. Neuroscience, 16(4), 213–225.  https://doi.org/10.1038/nrn3916.PubMedGoogle Scholar
  69. Taubert, M., Villringer, A., & Ragert, P. (2012). Learning-related grey and white matter changes in humans: An update. The Neuroscientist, 18(4), 320–325.CrossRefPubMedGoogle Scholar
  70. Tomasino, B., & Fabbro, F. (2016). Increases in the right dorsolateral prefrontal cortex and decreases the rostral prefrontal cortex activation after-8 weeks of focused attention based mindfulness meditation. Brain and Cognition, 102, 46–54.  https://doi.org/10.1016/j.bandc.2015.12.004.CrossRefPubMedGoogle Scholar
  71. Turkeltaub, P. E., Eden, G. F., Jones, K. M., & Zeffiro, T. A. (2002). Meta-analysis of the functional neuroanatomy of single-word reading: Method and validation. NeuroImage, 16(3), 765–780.CrossRefPubMedGoogle Scholar
  72. Turkeltaub, P. E., Eickhoff, S. B., Laird, A. R., Fox, M., Wiener, M., & Fox, P. (2012). Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Human Brain Mapping, 33(1), 1–13.  https://doi.org/10.1002/hbm.21186.CrossRefPubMedGoogle Scholar
  73. Vytal, K., & Hamann, S. (2012). Neuroimaging support for discrete neural correlates of basic emotions: A voxel-based meta-analysis. Journal of Cognitive Neuroscience, 22(12), 2864–2885.CrossRefGoogle Scholar
  74. Wager, T. D., Lindquist, M., & Kaplan, L. (2007). Meta-analysis of functional neuroimaging data: Current and future directions. Social Cognitive and Affective Neuroscience, 2(2), 150–158.  https://doi.org/10.1093/scan/nsm015.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Wang, D., Rao, H., Korczykowski, M., Wintering, N., Pluta, J., Khalsa, D., & Newberg, A. (2011). Cerebral blood flow changes associated with different meditation practices and perceived depth of meditation. Psychiatry Research: Neuroimaging, 191(1), 60–67.CrossRefPubMedGoogle Scholar
  76. Xu, J., Vik, A., Groote, I. R., Lagopoulos, J., Holen, A., Ellingsen, Ø., & …, Davanger, S. (2014). Nondirective meditation activates default mode network and areas associated with memory retrieval and emotional processing. Frontiers in Human Neuroscience, 8, 86.  https://doi.org/10.3389/fnhum.2014.00086.
  77. Zeidan, F., Martucci, K., Kraft, R., McHaffie, J., & Coghill, R. (2014). Neural correlates of mindfulness meditation-related anxiety relief. Social Cognitive and Affective Neuroscience, 9(6), 751–759.CrossRefPubMedGoogle Scholar
  78. Zeidan, F., Emerson, N., Farris, S., Ray, J., Jung, Y., Mchaffie, J., & Coghill, R. (2015). Mindfulness meditation-based pain relief employs different neural mechanisms than placebo and sham mindfulness meditation-induced analgesia. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 35(46), 15307–15325.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Psychology DepartmentSuffolk UniversityBostonUSA

Personalised recommendations