Advertisement

Mindfulness

, Volume 9, Issue 1, pp 303–311 | Cite as

Efficacy of Neurofeedback on the Increase of Mindfulness-Related Capacities in Healthy Individuals: a Controlled Trial

  • Mayte Navarro Gil
  • Carlos Escolano Marco
  • Jesús Montero-Marín
  • Javier Minguez Zafra
  • Edo Shonin
  • Javier García Campayo
ORIGINAL PAPER

Abstract

Electroencephalogram (EEG) studies of mindfulness have shown it can lead to increases in alpha power, which are similar to those obtained by alpha-based neurofeedback (NF) interventions. It has been hypothesized there may be relationships between mindfulness and NF in terms of the neural pathways through which they induce salutary outcomes. The aim of the study was to evaluate possible changes in mindfulness and cognitive functioning following an alpha-based NF intervention, and the role of alpha power as a mediator of improvements. A controlled, non-randomized, trial with 50 healthy participants was conducted with two experimental conditions: a six-session NF intervention and a waiting-list control group. Both groups were administered mindfulness questionnaires (Mindful Attention Awareness Scale (MAAS), Five Facet Mindfulness Questionnaire (FFMQ)) and cognitive measures (Paced Auditory Serial Addition Task (PASAT)), at pre- and post-test. The NF intervention focused on the up-regulation of upper alpha power. Differences among groups were estimated using ANCOVAs, and mediation assessment through path analyses. Compared to controls, the NF group showed enhanced task-related upper alpha power (effect size (ES) = 1.16, p < 0.001), mindfulness outcomes (MAAS: ES = 0.94, p = 0.004; FFMQ: ES = 1.38, p < 0.001), and a trend of cognitive functioning (PASAT time: ES = 0.59, p = 0.062). Upper alpha power had a mediating effect for cognitive functioning (PASAT errors: indirect effect = 0.81, 95% CI = 0.21–1.85), but not for mindfulness. These results demonstrate the effectiveness of NF for increasing mindfulness in healthy individuals with no previous experience in mindfulness or neurofeedback training, suggesting that NF may be an acceptable method of augmenting mindfulness-related capacities in the general population.

Keywords

Mindfulness Meditation Neurofeedback Electroencephalogram (EEG) Individual upper alpha 

Notes

Acknowledgments

We thank Red de Investigación en Actividades de Prevención y Promoción de la Salud (Research Network on Preventative Activities and Health Promotion) (REDIAPP-RD12/0005/0006) and Red de Excelencia PROMOSAM (PSI2014-56303-REDT) for their support in the development of this study.

Authors’ Contributions

MN: designed and executed the study and assisted with the data analyses. CE: analyzed the data and collaborated with the design and writing of the study. JMM: analyzed the data and collaborated in the writing of the study. JMZ: collaborated with the design and writing of the study. ES: revised the initial draft and collaborated in the writing of the study. JG: designed the study and collaborated with the writing of the study.

Compliance with Ethical Standards

The study was approved by the Aragon Ethical Committee (June 26, 2013; PI13/00077).

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

12671_2017_775_MOESM1_ESM.docx (83 kb)
ESM 1 (DOCX 83 kb)

References

  1. Ahani, A., Wahbeh, H., Nezamfar, H., Miller, M., Erdogmus, D., & Oken, B. (2014). Quantitative change of EEG and respiration signals during mindfulness meditation. Journal of Neuroengineering and Rehabilitation, 11, 87. doi: 10.1186/1743-0003-11-87.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amihai, I., & Kozhevnikov, M. (2014). Arousal vs. relaxation: a comparison of the neurophysiological and cognitive correlates of Vajrayana and Theravada meditative practices. PloS One, 9(7). doi: 10.1371/journal.pone.0102990.
  3. Baer, R. A., Smith, G. T., & Allen, K. B. (2004). Assessment of mindfulness by self-report: the Kentucky inventory of mindfulness skills. Assessment, 11, 191–206. doi: 10.1177/1073191104268029.CrossRefPubMedGoogle Scholar
  4. Baer R. A., Smith G. T., Hopkins J., Krietemeyer J., Toney L. (2006). Using self-report assessment methods to explore facets of mindfulness. Assessment, 13, 27–45. doi:  10.1177/1073191105283504.
  5. Brandmeyer, T., & Delorme, A. (2013). Meditation and neurofeedback. Frontiers in Psychology, 4, 3–5. doi: 10.3389/fpsyg.2013.00688.CrossRefGoogle Scholar
  6. Bergomi, C., Tschacher, W., & Kupper, Z. (2013). Measuring mindfulness: first steps towards the development of a comprehensive mindfulness scale. Mindfulness, 4(1), 18–32. doi: 10.1007/s12671-012-0102-9.CrossRefGoogle Scholar
  7. Brown, K. W., & Ryan, R. M. (2003). The benefits of being present: mindfulness and its role in psychological well-being. Journal of Personality and Social Psychology, 84(4), 822–848. doi: 10.1037/0022-3514.84.4.822.CrossRefPubMedGoogle Scholar
  8. Cahn, B. R., & Polich, J. (2006). Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychological Bulletin, 132(2), 180–211. doi: 10.1037/0033-2909.132.2.180.CrossRefPubMedGoogle Scholar
  9. Cahn, B. R., Delorme, A., & Polich, J. (2010). Occipital gamma activation during Vipassana meditation. Cognitive Process, 11(1), 39–56. doi: 10.1007/s10339-009-0352-1.CrossRefGoogle Scholar
  10. Cebolla, A., García-Palacios, A., Soler, J., Guillen, V., Baños, R., & Botella, C. (2012). Psychometric properties of the Spanish validation of the Five Facets of Mindfulness Questionnaire (FFMQ). The European Journal of Psychiatry, 26(2), 118–126. doi: 10.4321/S0213-61632012000200005.CrossRefGoogle Scholar
  11. Chiesa, A., & Serretti, A. (2010). A systematic review of neurobiological and clinical features of mindfulness meditations. Psychological Medicine, 40(08), 1239–1252. doi: 10.1017/S0033291709991747.CrossRefPubMedGoogle Scholar
  12. Chiesa, A., Calati, R., & Serretti, A. (2011). Does mindfulness training improve cognitive abilities? A systematic review of neuropsychological findings. Clinical Psychology Review, 31(3), 449–464. doi: 10.1016/j.cpr.2010.11.003.CrossRefPubMedGoogle Scholar
  13. Chow, T., Javan, T., Ros, T., & Frewen, P. (2017). EEG dynamics of mindfulness meditation versus alpha neurofeedback: a sham-controlled study. Mindfulness, 8(3), 572–584. doi: 10.1007/s12671-016-0631-8.CrossRefGoogle Scholar
  14. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2. Auflage). Hillsdale: Erlbaum.Google Scholar
  15. Congedo, M. (2002). Eureka! (version3.0) [ComputerSoftware]. Knoxville,TN: Nova Tech EEG Inc. Available online at: www.NovaTechEEG.
  16. Dunn, B. R., Hartigan, J. A., & Mikulas, W. L. (1999). Concentration and mindfulness meditations: unique forms of consciousness? Applied Psychophysiology and Biofeedback, 24(3), 147–165. doi: 10.1023/A:1023498629385.CrossRefPubMedGoogle Scholar
  17. Escolano, C., Aguilar, M., & Minguez, J. (2011). EEG-based upper alpha neurofeedback training improves working memory performance. In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 2327–2330). doi:  10.1109/IEMBS.2011.6090651.
  18. Escolano, C., Navarro-Gil, M., Garcia-Campayo, J., Congedo, M., De Ridder, D., & Minguez, J. (2014). A controlled study on the cognitive effect of alpha neurofeedback training in patients with major depressive disorder. Frontiers in Behavioral Neuroscience, 8, 296. doi: 10.3389/fnbeh.2014.00296.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Freunberger, R., Werkle-Bergner, M., Griesmayr, B., Lindenberger, U., & Klimesch, W. (2011). Brain oscillatory correlates of working memory constraints. Brain Research, 1375, 93–102. doi: 10.1016/j.brainres.2010.12.048.CrossRefPubMedGoogle Scholar
  20. Grossman, P., & van Dam, N. T. (2011). Mindfulness, by any other name: trials and tribulations of sati in western psychology and science. Contemporary Buddhism, 12, 219–239. doi: 10.1080/14639947.2011.564841.CrossRefGoogle Scholar
  21. Gronwall, D. M. A. (1977). Paced auditory serial-addition task: a measure of recovery from concussion. Perceptual and Motor Skills, 44(2), 367–373. doi: 10.2466/pms.1977.44.2.367.CrossRefPubMedGoogle Scholar
  22. Gruzelier, J. H. (2014). EEG-neurofeedback for optimising performance. I: a review of cognitive and affective outcome in healthy participants. Neuroscience and Biobehavioral Reviews, 44, 124–141. doi: 10.1016/j.neubiorev.2013.09.015.CrossRefPubMedGoogle Scholar
  23. Hanslmayr, S., Sauseng, P., Doppelmayr, M., Schabus, M., & Klimesch, W. (2005). Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects. Applied Psychophysiology and Biofeedback, 30(1), 1–10. doi: 10.1007/s10484-005-2169-8.CrossRefPubMedGoogle Scholar
  24. Hinterberger, T., Schmidt, S., Kamei, T., & Walach, H. (2014). Decreased electrophysiological activity represents the conscious state of emptiness in meditation. Frontiers in Psychology, 5, 99. doi: 10.3389/fpsyg.2014.00099.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Holzel, B. K., Lazar, S. W., Gard, T., Schuman-Olivier, Z., Vago, D. R., & Ott, U. (2011). How does mindfulness meditation work? Proposing mechanisms of action from a conceptual and neural perspective. Perspectives on Psychological Science, 6(6), 537–559. doi: 10.1177/1745691611419671.CrossRefPubMedGoogle Scholar
  26. Hu, F., Hu, Y., Ma, Z., & Rosenberger, W. F. (2014). Adaptive randomization for balancing over covariates. WIREs Computational Statistics, 6, 288–303. doi: 10.1002/wics.1309.CrossRefGoogle Scholar
  27. Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10(3), 626–634. doi: 10.1109/72.761722.CrossRefPubMedGoogle Scholar
  28. Kabat-Zinn, J. (2003). Mindfulness-based interventions in context: past, present, and future. Clinical Psychology: Science and Practice, 10(2), 144–156. doi: 10.1093/clipsy.bpg016.Google Scholar
  29. Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research Reviews, 29(2–3), 169–195. doi: 10.1016/S0165-0173(98)00056-3.CrossRefPubMedGoogle Scholar
  30. Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: the inhibition-timing hypothesis. Brain Research Reviews, 53(1), 63–88. doi: 10.1016/j.brainresrev.2006.06.003.CrossRefPubMedGoogle Scholar
  31. Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Frontiers in Human Neuroscience, 4, 186. doi: 10.3389/fnhum.2010.00186.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lagopoulos, J., Xu, J., Rasmussen, I., Vik, A., Malhi, G. S., Eliassen, C. F., Arntsen, I. E., Saether, J. G., Hollup, S., Holen, A., Davanger, S., & Ellingsen, Ø. (2009). Increased theta and alpha EEG activity during nondirective meditation. The Journal of Alternative and Complementary Medicine, 15(11), 1187–1192. doi: 10.1089/acm.2009.0113.CrossRefPubMedGoogle Scholar
  33. Lee, T. W., Girolami, M., & Sejnowski, T. J. (1999). Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation, 11(2), 417–441. doi: 10.1162/089976699300016719.CrossRefPubMedGoogle Scholar
  34. Lehmann, D., Faber, P. L., Tei, S., Pascual-Marqui, R. D., Milz, P., & Kochi, K. (2012). Reduced functional connectivity between cortical sources in five meditation traditions detected with lagged coherence using EEG tomography. NeuroImage, 60(2), 1574–1586. doi: 10.1016/j.neuroimage.2012.01.042.CrossRefPubMedGoogle Scholar
  35. Leong, K., Chan, P., Grabovac, A., Wilkins-Ho, M., & Perri, M. (2013). Changes in mindfulness following repetitive transcranial magnetic stimulation for mood disorders. Canadian Journal of Psychiatry, 58(12), 687–691. doi: 10.1177/070674371305801206.CrossRefPubMedGoogle Scholar
  36. Lomas, T., Ivtzan, I., & Fu, C. H. (2015). A systematic review of the neurophysiology of mindfulness on EEG oscillations. Neuroscience & Biobehavioral Reviews, 57, 401–410. doi: 10.1016/j.neubiorev.2015.09.018.CrossRefGoogle Scholar
  37. MacKillop, J., & Anderson, E. J. (2007). Further psychometric validation of the mindful attention awareness scale (MAAS). Journal of Psychopathology and Behavioral Assessment, 29(4), 289–293. doi: 10.1007/s10862-007-9045-1.CrossRefGoogle Scholar
  38. Martín Asuero, A., Rodríguez Blanco, T., Pujol-Ribera, E., Berenguera, A., Moix, Q., & J. (2013). Effectiveness of a mindfulness program in primary care professionals. Gaceta Sanitaria., 27(6), 521–528. doi: 10.1016/j.gaceta.2013.04.007.CrossRefPubMedGoogle Scholar
  39. Milz, P., Faber, P. L., Lehmann, D., Kochi, K., & Pascual-Marqui, R. D. (2014). sLORETA intracortical lagged coherence during breath counting in meditation-naïve participants. Frontiers in Human Neuroscience., 8(303). doi: 10.3389/fnhum.2014.00303.
  40. Montero-Marin, J., Puebla-Guedea, M., Herrera-Mercadal, P., Cebolla, A., Soler, J., Demarzo, M., Vazquez, C., Rodríguez-Bornaetxea, F., & García-Campayo, J. (2016). Psychological effects of a 1-month meditation retreat on experienced meditators: the role of non-attachment. Frontiers in Psychology, 12(7), 1935. doi: 10.3389/fpsyg.2016.01935.Google Scholar
  41. Nan, W., Rodrigues, J. P., Ma, J., Qu, X., Wan, F., Mak, P. I., Mak, P. U., Vai, M. I., & Rosa, A. (2012). Individual alpha neurofeedback training effect on short term memory. International Journal of Psychophysiology, 86(1), 83–87. doi: 10.1016/j.ijpsycho.2012.07.182.CrossRefPubMedGoogle Scholar
  42. Niedermeyer, E., & da Silva, F. L. (Eds.). (2005). Electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins.Google Scholar
  43. Niv, S. (2013). Clinical efficacy and potential mechanisms of neurofeedback. Personality and Individual Differences, 54(6), 676–686. doi: 10.1016/j.paid.2012.11.037.CrossRefGoogle Scholar
  44. Osman, A., Lamis, D. A., Bagge, C. L., Freedenthal, S., & Barnes, S. M. (2016). The mindful attention awareness scale: further examination of dimensionality, reliability, and concurrent validity estimates. Journal of Personality Assessment, 98(2), 189–199. doi: 10.1080/00223891.2015.1095761.CrossRefPubMedGoogle Scholar
  45. Rau, H. K., & Williams, P. G. (2016). Dispositional mindfulness: a critical review of construct validation research. Personality and Individual Differences, 93, 32–43. doi: 10.1016/j.paid.2015.09.035.CrossRefGoogle Scholar
  46. Sauer, S., Walach, H., Schmidt, S., Hinterberger, T., Lynch, S., Büsing, A., & Kohls, N. (2013). Assessment of mindfulness: a review on the state of the art. Mindfulness, 4, 3–17. doi: 10.1007/s12671-012-0122-5.CrossRefGoogle Scholar
  47. Shonin, E., Van Gordon, W., & Griffiths, M. D. (2015). Does mindfulness work? British Medical Journal, 351, h6919. doi: 10.1136/bmj.h6919.CrossRefPubMedGoogle Scholar
  48. Soler, J., Tejedor, R., Feliu-Soler, A., Pascual, J. C., Cebolla, A., Soriano, J., Alvarez, E., & Perez, V. (2012). Psychometric proprieties of Spanish version of Mindful Attention Awareness Scale (MAAS). Actas Españolas de Psiquiatría, 40(1).Google Scholar
  49. Soler, J., Elices, M., Franquesa, A., Barker, S., Friedlander, P., Feilding, A., Pascual, J. C., & Riba, J. (2016). Exploring the therapeutic potential of ayahuasca: acute intake increases mindfulness-related capacities. Psychopharmacology, 233(5), 823–829. doi: 10.1007/s00213-015-4162-0.CrossRefPubMedGoogle Scholar
  50. Teasdale, J. D., Segal, Z., & Williams, J. M. G. (1995). How does cognitive therapy prevent depressive relapse and why should attentional control (mindfulness) training help? Behaviour Research and Therapy, 33(1), 25–39. doi: 10.1016/0005-7967(94)E0011-7.CrossRefPubMedGoogle Scholar
  51. Tombaugh, T. N. (2006). A comprehensive review of the Paced Auditory Serial Addition Test (PASAT). Archives of Clinical Neuropsychology, 21(1), 53–76. doi: 10.1016/j.acn.2005.07.006.CrossRefPubMedGoogle Scholar
  52. Tuladhar, A. M., Huurne, N. T., Schoffelen, J. M., Maris, E., Oostenveld, R., & Jensen, O. (2007). Parieto-occipital sources account for the increase in alpha activity with working memory load. Human Brain Mapping, 28(8), 785–792. doi: 10.1002/hbm.20306.CrossRefPubMedGoogle Scholar
  53. Van Dijk, H., Schoffelen, J. M., Oostenveld, R., & Jensen, O. (2008). Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. Journal of Neuroscience, 28(8), 1816–1823. doi: 10.1523/JNEUROSCI.1853-07.2008.CrossRefPubMedGoogle Scholar
  54. Van Gordon, W., Shonin, E., Griffiths, M. D., & Singh, N. N. (2015). There is only one mindfulness: why science and Buddhism need to work together. Mindfulness, 6(1), 49–56. doi: 10.1007/s12671-014-0379-y.CrossRefGoogle Scholar
  55. Van Lutterveld, R., Houlihan, S. D., Pal, P., Sacchet, M. D., McFarlane-Blake, C., Patel, P. R., Sullivan, J. S., Ossadtchi, A., Druker, S., Bauer, C., & Brewer, J. A. (2016). Source-space EEG neurofeedback links subjective experience with brain activity during effortless awareness meditation. NeuroImage, 151, 117–127. doi: 10.1016/j.neuroimage.2016.02.047.CrossRefPubMedGoogle Scholar
  56. Yu, X., Fumoto, M., Nakatani, Y., Sekiyama, T., Kikuchi, H., Seki, Y., Sato-Suzuki, I., & Arita, H. (2011). Activation of the anterior prefrontal cortex and serotonergic system is associated with improvements in mood and EEG changes induced by Zen meditation practice in novices. International Journal of Psychophysiology, 80(2), 103–111. doi: 10.1016/j.ijpsycho.2011.02.004.CrossRefPubMedGoogle Scholar
  57. Zoefel, B., Huster, R. J., & Herrmann, C. S. (2011). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. NeuroImage, 54(2), 1427–1431. doi: 10.1016/j.neuroimage.2010.08.078.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Mayte Navarro Gil
    • 1
    • 2
  • Carlos Escolano Marco
    • 3
  • Jesús Montero-Marín
    • 4
    • 2
  • Javier Minguez Zafra
    • 3
    • 5
  • Edo Shonin
    • 6
    • 7
  • Javier García Campayo
    • 1
    • 2
  1. 1.Department of Mental Health in Primary Care, Aragon Health Sciences Institute (IACS)University of ZaragozaZaragozaSpain
  2. 2.Primary Care Prevention and Health Promotion Research Network (RedIAPP)ZaragozaSpain
  3. 3.BitBrain Technologies SLZaragozaSpain
  4. 4.Faculty of Health Sciences and SportsUniversity of ZaragozaZaragozaSpain
  5. 5.Department of Robotics, Perception and Real Time Group, Aragon Institute of Engineering Research (I3A)University of ZaragozaZaragozaSpain
  6. 6.Awake to Wisdom Centre for Meditation and Mindfulness ResearchNottinghamUK
  7. 7.Division of PsychologyNottingham Trent UniversityNottinghamUK

Personalised recommendations