Advertisement

Mindfulness

, Volume 8, Issue 6, pp 1603–1614 | Cite as

Behavioral and Electrophysiological Evidence of Enhanced Performance Monitoring in Meditators

  • Catherine I. Andreu
  • Cristóbal Moënne-Loccoz
  • Vladimir López
  • Heleen A. Slagter
  • Ingmar H. A. Franken
  • Diego Cosmelli
ORIGINAL PAPER

Abstract

Performance monitoring—the ability to monitor ongoing performance to detect and correct errors—is a core component of cognitive control. Impairments in performance monitoring have been associated with several psychiatric disorders, including attention deficit hyperactivity disorder and substance use disorder. Recent research indicates that the practice of meditation, as a mental training technique, may improve cognitive control. However, if and to what extent regular long-term meditation practice may enhance performance monitoring is currently unknown. The present study examined effects of meditation practice on behavioral and electrophysiological indices of performance monitoring. A group of meditators and an experience-matched active control group (non-meditator athletes) performed an Eriksen-Flanker task while their brain activity was recorded using electroencephalography (EEG). Behaviorally, meditators made significantly fewer errors than controls on incongruent trials. EEG analyses revealed a general increase in the amplitude of two brain potentials associated with performance monitoring—the error negativity (Ne) or error-related negativity (ERN) and correct-related negativity (CRN)—in meditators compared to controls. These findings, which are indicative of enhanced performance monitoring in meditators, corroborate the idea that meditation could be a recommendable practice to train and improve cognitive control, specifically performance monitoring.

Keywords

Meditation Performance monitoring Error-related negativity Cognitive control EEG 

Notes

Author Contributions

CA designed and executed the study, performed the data analyses, and wrote the paper. CM collaborated with the programming and data analyses. VL collaborated with the design and writing of the study. HS collaborated with the design and writing of the study. IF collaborated with the design and writing of the study. DC collaborated with the design and writing of the study.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and animal rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Funding

This work was supported by the National Committee of Science and Technology of Chile (CONICYT) National PhD Grant [21140175 to CI.A.], National Fund for Scientific and Technologic Development (FONDECYT) Grant [1130758 to V.L. and D.C], and the Fund for Innovation and Competitiveness (FIC) of the Chilean Ministry of Economy, Development and Tourism, through the Millennium Scientific Initiative, Grant [IS 130005—MIDAP to D.C.].

Supplementary material

12671_2017_732_MOESM1_ESM.docx (86 kb)
ESM 1 (DOCX 85 kb)

References

  1. Allain, S., Carbonnell, L., Falkenstein, M., Burle, B., & Vidal, F. (2004). The modulation of the Ne-like wave on correct responses foreshadows errors. Neuroscience Letters, 372(1–2), 161–166.CrossRefPubMedGoogle Scholar
  2. Allen, M., Dietz, M., Blair, K. S., van Beek, M., Rees, G., Vestergaard-Poulsen, P., … Roepstorff, A. (2012). Cognitive-affective neural plasticity following active-controlled mindfulness intervention. Journal of Neuroscience, 32(44), 15601–15610. doi: 10.1523/JNEUROSCI.2957-12.2012.
  3. Baer, R. A., Smith, G. T., Hopkins, J., Krietemeyer, J., & Toney, L. (2006). Using self-report assessment methods to explore facets of mindfulness. Assessment, 13(1), 27–45. doi: 10.1177/1073191105283504.CrossRefPubMedGoogle Scholar
  4. Bartholow, B. D., Pearson, M. A., Dickter, C. L., Sher, K. J., Fabiani, M., & Gratton, G. (2005). Strategic control and medial frontal negativity: beyond errors and response conflict. Psychophysiology, 42(1), 33–42. doi: 10.1111/j.1469-8986.2005.00258.x.CrossRefPubMedGoogle Scholar
  5. Belouchrani, A., Abed-Meriam, K., Cardoso, J.-F., & Moulines, E. (1997). A blind source separation technique using second-order statistics. IEEE Transactions on Signal Processing, 45, 434–444.CrossRefGoogle Scholar
  6. von Borries, A. K., Brazil, I. A., Bulten, B. H., Buitelaar, J. K., Verkes, R. J., & de Bruijn, E. R. (2010). Neural correlates of error-related learning deficits in individuals with psychopathy. Psychological Medicine, 40(9), 1559–1568. doi: 10.1017/S0033291709992017.CrossRefGoogle Scholar
  7. Brazil, I. A., de Bruijn, E. R., Bulten, B. H., von Borries, A. K., van Lankveld, J. J., Buitelaar, J. K., & Verkes, R. J. (2009). Early and late components of error monitoring in violent offenders with psychopathy. Biological Psychiatry, 65(2), 137–143. doi: 10.1016/j.biopsych.2008.08.011.CrossRefPubMedGoogle Scholar
  8. Brefczynski-Lewis, J. A., Lutz, A., Schaefer, H. S., Levinson, D. B., & Davidson, R. J. (2007). Neural correlates of attentional expertise in long-term meditation practitioners. Proceedings of the National Academy of Sciences of the United States of America, 104(27), 11483–11488. doi: 10.1073/pnas.0606552104.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Brown, K. W., Goodman, R. J., & Inzlicht, M. (2013). Dispositional mindfulness and the attenuation of neural responses to emotional stimuli. Social Cognitive Affective Neuroscience, 8(1), 93–99. doi: 10.1093/scan/nss004.CrossRefPubMedGoogle Scholar
  10. Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6), 215–222.CrossRefPubMedGoogle Scholar
  11. Cahn, B. R., & Polich, J. (2006). Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychological Bulletin, 132(2), 180–211. doi: 10.1037/0033-2909.132.2.180.CrossRefPubMedGoogle Scholar
  12. Casey, B. J., Trainor, R., Giedd, J., Vauss, Y., Vaituzis, C. K., Hamburger, S., … Rapoport, J. L. (1997). The role of the anterior cingulate in automatic and controlled processes: a developmental neuroanatomical study. Developmental Psychobiology, 30(1), 61–69.Google Scholar
  13. Chambers, R., Gullone, E., & Allen, N. B. (2009). Mindful emotion regulation: an integrative review. Clinical Psychology Review, 29(6), 560–572. doi: 10.1016/j.cpr.2009.06.005.CrossRefPubMedGoogle Scholar
  14. Chiesa, A., Calati, R., & Serretti, A. (2011). Does mindfulness training improve cognitive abilities? A systematic review of neuropsychological findings. Clinical Psychology Review, 31(3), 449–464. doi: 10.1016/j.cpr.2010.11.003.CrossRefPubMedGoogle Scholar
  15. Coles, M. G., Scheffers, M. K., & Holroyd, C. B. (2001). Why is there an ERN/Ne on correct trials? Response representations, stimulus-related components, and the theory of error-processing. Biological Psychology, 56(3), 173–189.CrossRefPubMedGoogle Scholar
  16. Davidson, R. J. (2010). Empirical explorations of mindfulness: conceptual and methodological conundrums. Emotion, 10(1), 8–11. doi: 10.1037/a0018480.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Davidson, R. J., & Kaszniak, A. W. (2015). Conceptual and methodological issues in research on mindfulness and meditation. American Psychologist, 70(7), 581–592. doi: 10.1037/a0039512.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Desbordes, G., Negi, L. T., Pace, T. W., Wallace, B. A., Raison, C. L., & Schwartz, E. L. (2012). Effects of mindful-attention and compassion meditation training on amygdala response to emotional stimuli in an ordinary, non-meditative state. Frontiers in Human Neuroscience, 6, 292. doi: 10.3389/fnhum.2012.00292.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dienes, Z. (2014). Using Bayes to get the most out of non-significant results. Frontiers in Psychology, 5, 781. doi: 10.3389/fpsyg.2014.00781.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Edwards, B. G., Calhoun, V. D., & Kiehl, K. A. (2012). Joint ICA of ERP and fMRI during error-monitoring. NeuroImage, 59(2), 1896–1903. doi: 10.1016/j.neuroimage.2011.08.088.CrossRefPubMedGoogle Scholar
  21. Eggenberger, P., Theill, N., Holenstein, S., Schumacher, V., & de Bruin, E. D. (2015). Multicomponent physical exercise with simultaneous cognitive training to enhance dual-task walking of older adults: a secondary analysis of a 6-month randomized controlled trial with 1-year follow-up. Clinical Interventions in Aging, 10, 1711–1732. doi: 10.2147/CIA.S91997.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Egner, T., & Hirsch, J. (2005). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8(12), 1784–1790. doi: 10.1038/nn1594.CrossRefPubMedGoogle Scholar
  23. Elliott, J. C., Wallace, B. A., & Giesbrecht, B. (2014). A week-long meditation retreat decouples behavioral measures of the alerting and executive attention networks. Frontiers in Human Neuroscience, 8, 69. doi: 10.3389/fnhum.2014.00069.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Endrass, T., Klawohn, J., Schuster, F., & Kathmann, N. (2008). Overactive performance monitoring in obsessive-compulsive disorder: ERP evidence from correct and erroneous reactions. Neuropsychologia, 46(7), 1877–1887. doi: 10.1016/j.neuropsychologia.2007.12.001.CrossRefPubMedGoogle Scholar
  25. Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a non-search task. Perception & Psychophysics, 16, 143–149.CrossRefGoogle Scholar
  26. Euser, A. S., Evans, B. E., Greaves-Lord, K., Huizink, A. C., & Franken, I. H. (2013). Diminished error-related brain activity as a promising endophenotype for substance-use disorders: evidence from high-risk offspring. Addiction Biology, 18(6), 970–984. doi: 10.1111/adb.12002.CrossRefPubMedGoogle Scholar
  27. Falkenstein, M., Hohnsbein, J., & Hoormann, J. (1995). Event-related potential correlates of errors in reaction tasks. Electroencephalography and Clinical Neurophysiology Supplement, 44, 287–296.PubMedGoogle Scholar
  28. Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1991). Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalography and Clinical Neurophysiology, 78(6), 447–455.CrossRefPubMedGoogle Scholar
  29. Falkenstein, M., Hoormann, J., Christ, S., & Hohnsbein, J. (2000). ERP components on reaction errors and their functional significance: a tutorial. Biological Psychology, 51(2–3), 87–107.CrossRefPubMedGoogle Scholar
  30. Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14(3), 340–347. doi: 10.1162/089892902317361886.CrossRefPubMedGoogle Scholar
  31. Farb, N. A., Anderson, A. K., & Segal, Z. V. (2012). The mindful brain and emotion regulation in mood disorders. Canadian Journal of Psychiatry, 57(2), 70–77.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Foti, D., Perlman, G., Hajcak, G., Mohanty, A., Jackson, F., & Kotov, R. (2016). Impaired error processing in late-phase psychosis: four-year stability and relationships with negative symptoms. Schizophrenia Research. doi: 10.1016/j.schres.2016.05.009.PubMedPubMedCentralGoogle Scholar
  33. Franken, I. H., van Strien, J. W., Franzek, E. J., & van de Wetering, B. J. (2007). Error-processing deficits in patients with cocaine dependence. Biological Psychology, 75(1), 45–51. doi: 10.1016/j.biopsycho.2006.11.003.CrossRefPubMedGoogle Scholar
  34. Franken, I. H., van Strien, J. W., & Kuijpers, I. (2010). Evidence for a deficit in the salience attribution to errors in smokers. Drug and Alcohol Dependence, 106(2–3), 181–185. doi: 10.1016/j.drugalcdep.2009.08.014.CrossRefPubMedGoogle Scholar
  35. Froeliger, B. E., Garland, E. L., Modlin, L. A., & McClernon, F. J. (2012). Neurocognitive correlates of the effects of yoga meditation practice on emotion and cognition: a pilot study. Frontiers in Integrative Neuroscience, 6, 48. doi: 10.3389/fnint.2012.00048.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gehring, W. J., Coles, M. G., Meyer, D. E., & Donchin, E. (1995). A brain potential manifestation of error-related processing. Electroencephalography and Clinical Neurophysiology Supplement, 44, 261–272.PubMedGoogle Scholar
  37. Hajcak, G., Franklin, M. E., Foa, E. B., & Simons, R. F. (2008). Increased error-related brain activity in pediatric obsessive-compulsive disorder before and after treatment. American Journal of Psychiatry, 165(1), 116–123. doi: 10.1176/appi.ajp.2007.07010143.CrossRefPubMedGoogle Scholar
  38. Harrington, A., & Dunne, J. D. (2015). When mindfulness is therapy: ethical qualms, historical perspectives. American Psychologist, 70(7), 621–631. doi: 10.1037/a0039460.CrossRefPubMedGoogle Scholar
  39. Hart, W. (1987). The art of living: Vipassana meditation as taught by S. N. Goenka. New York: HarperOne.Google Scholar
  40. Hasenkamp, W., & Barsalou, L. W. (2012). Effects of meditation experience on functional connectivity of distributed brain networks. Frontiers in Human Neuroscience, 6, 38. doi: 10.3389/fnhum.2012.00038.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hoffmann, S., & Falkenstein, M. (2012). Predictive information processing in the brain: errors and response monitoring. International Journal of Psychophysiology, 83(2), 208–212. doi: 10.1016/j.ijpsycho.2011.11.015.CrossRefPubMedGoogle Scholar
  42. Holzel, B. K., Ott, U., Hempel, H., Hackl, A., Wolf, K., Stark, R., & Vaitl, D. (2007). Differential engagement of anterior cingulate and adjacent medial frontal cortex in adept meditators and non-meditators. Neuroscience Letters, 421(1), 16–21. doi: 10.1016/j.neulet.2007.04.074.CrossRefPubMedGoogle Scholar
  43. Houthoofd, S., Morrens, M., Sabbe, B., Schrijvers, D., Vandendriessche, F., Hulstijn, W., & de Bruijn, E. R. (2013). Trait and state aspects of internal and external performance monitoring in schizophrenia. International Journal of Psychophysiology, 87(1), 42–51. doi: 10.1016/j.ijpsycho.2012.10.016.CrossRefPubMedGoogle Scholar
  44. Iannaccone, R., Hauser, T. U., Staempfli, P., Walitza, S., Brandeis, D., & Brem, S. (2015). Conflict monitoring and error processing: new insights from simultaneous EEG-fMRI. NeuroImage, 105, 395–407. doi: 10.1016/j.neuroimage.2014.10.028.CrossRefPubMedGoogle Scholar
  45. Jha, A. P., Krompinger, J., & Baime, M. J. (2007). Mindfulness training modifies subsystems of attention. Cognitive, Affective and Behavioral Neuroscience, 7(2), 109–119.CrossRefPubMedGoogle Scholar
  46. Kida, N., Oda, S., & Matsumura, M. (2005). Intensive baseball practice improves the Go/Nogo reaction time, but not the simple reaction time. Brain Research Cognitive Brain Research, 22(2), 257–264. doi: 10.1016/j.cogbrainres.2004.09.003.CrossRefPubMedGoogle Scholar
  47. Kim, S. H., Jang, K. M., & Kim, M. S. (2015). Deficits in error-monitoring by college students with schizotypal traits: an event-related potential study. PloS One, 10(3), e0122861. doi: 10.1371/journal.pone.0122861.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Klimecki, O. M., Leiberg, S., Lamm, C., & Singer, T. (2013). Functional neural plasticity and associated changes in positive affect after compassion training. Cerebral Cortex, 23(7), 1552–1561. doi: 10.1093/cercor/bhs142.CrossRefPubMedGoogle Scholar
  49. Lahat, A., Lamm, C., Chronis-Tuscano, A., Pine, D. S., Henderson, H. A., & Fox, N. A. (2014). Early behavioral inhibition and increased error monitoring predict later social phobia symptoms in childhood. Journal of the American Academy of Child and Adolescent Psychiatry, 53(4), 447–455. doi: 10.1016/j.jaac.2013.12.019.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Larson, M. J., Clayson, P. E., & Clawson, A. (2014). Making sense of all the conflict: a theoretical review and critique of conflict-related ERPs. International Journal of Psychophysiology, 93(3), 283–297. doi: 10.1016/j.ijpsycho.2014.06.007.CrossRefPubMedGoogle Scholar
  51. Larson, M. J., Gray, A. C., Clayson, P. E., Jones, R., & Kirwan, C. B. (2013a). What are the influences of orthogonally-manipulated valence and arousal on performance monitoring processes? The effects of affective state. International Journal of Psychophysiology, 87(3), 327–339. doi: 10.1016/j.ijpsycho.2013.01.005.CrossRefPubMedGoogle Scholar
  52. Larson, M. J., Steffen, P. R., & Primosch, M. (2013b). The impact of a brief mindfulness meditation intervention on cognitive control and error-related performance monitoring. Frontiers in Human Neuroscience, 7, 308. doi: 10.3389/fnhum.2013.00308.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lievaart, M., van der Veen, F. M., Huijding, J., Naeije, L., Hovens, J. E., & Franken, I. H. (2015). Trait anger in relation to neural and behavioral correlates of response inhibition and error-processing. International Journal of Psychophysiology, 99, 40–47. doi: 10.1016/j.ijpsycho.2015.12.001.CrossRefPubMedGoogle Scholar
  54. Liotti, M., Pliszka, S. R., Perez, R., Kothmann, D., & Woldorff, M. G. (2005). Abnormal brain activity related to performance monitoring and error detection in children with ADHD. Cortex, 41(3), 377–388.CrossRefPubMedGoogle Scholar
  55. Luijten, M., Machielsen, M. W., Veltman, D. J., Hester, R., de Haan, L., & Franken, I. H. (2014). Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions. Journal of Psychiatry and Neuroscience, 39(3), 149–169.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Luijten, M., van Meel, C. S., & Franken, I. H. (2011). Diminished error processing in smokers during smoking cue exposure. Pharmacology, Biochemistry and Behavior, 97(3), 514–520. doi: 10.1016/j.pbb.2010.10.012.CrossRefPubMedGoogle Scholar
  57. Lutz, A., Brefczynski-Lewis, J., Johnstone, T., & Davidson, R. J. (2008a). Regulation of the neural circuitry of emotion by compassion meditation: effects of meditative expertise. PloS One, 3(3), e1897. doi: 10.1371/journal.pone.0001897.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Lutz, A., Slagter, H. A., Dunne, J. D., & Davidson, R. J. (2008b). Attention regulation and monitoring in meditation. Trends in Cognitive Sciences, 12(4), 163–169. doi: 10.1016/j.tics.2008.01.005.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Lutz, A., Slagter, H. A., Rawlings, N. B., Francis, A. D., Greischar, L. L., & Davidson, R. J. (2009). Mental training enhances attentional stability: neural and behavioral evidence. The Journal of Neuroscience, 29(42), 13418–13427. doi: 10.1523/JNEUROSCI.1614-09.2009.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Maurer, J. M., Steele, V. R., Edwards, B. G., Bernat, E. M., Calhoun, V. D., & Kiehl, K. A. (2015). Dysfunctional error-related processing in female psychopathy. Social Cognitive and Affective Neuroscience. doi: 10.1093/scan/nsv070.PubMedPubMedCentralGoogle Scholar
  61. Moore, A., Gruber, T., Derose, J., & Malinowski, P. (2012). Regular, brief mindfulness meditation practice improves electrophysiological markers of attentional control. Frontiers in Human Neuroscience, 6, 18. doi: 10.3389/fnhum.2012.00018.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Moore, A., & Malinowski, P. (2009). Meditation, mindfulness and cognitive flexibility. Consciousness and Cognition, 18(1), 176–186. doi: 10.1016/j.concog.2008.12.008.CrossRefPubMedGoogle Scholar
  63. Olvet, D. M., & Hajcak, G. (2009a). The effect of trial-to-trial feedback on the error-related negativity and its relationship with anxiety. Cognitive, Affective and Behavioral Neuroscience, 9(4), 427–433. doi: 10.3758/CABN.9.4.427.CrossRefPubMedGoogle Scholar
  64. Olvet, D. M., & Hajcak, G. (2009b). The stability of error-related brain activity with increasing trials. Psychophysiology, 46(5), 957–961. doi: 10.1111/j.1469-8986.2009.00848.x.CrossRefPubMedGoogle Scholar
  65. Ortner, C., Kilner, S., & Zelazo, P. D. (2007). Mindfulness meditation and reduced emotional interference on a cognitive task. Motivation and Emotion, 31(4), 271–283.CrossRefGoogle Scholar
  66. Overbeek, T. J. M., Nieuwenhuis, S., & Ridderinkhof, K. R. (2005). Dissociable components of error processing: on the functional significance of the Pe vis-à-vis the ERN/ne. Psychophysiology, 19(4), 319–329.CrossRefGoogle Scholar
  67. Patton, J. H., Stanford, M. S., & Barratt, E. S. (1995). Factor structure of the Barratt impulsiveness scale. Journal of Clinical Psychology, 51(6), 768–774.CrossRefPubMedGoogle Scholar
  68. Paul, N. A., Stanton, S. J., Greeson, J. M., Smoski, M. J., & Wang, L. (2013). Psychological and neural mechanisms of trait mindfulness in reducing depression vulnerability. Social Cognitive Affective Neuroscience, 8(1), 56–64. doi: 10.1093/scan/nss070.CrossRefPubMedGoogle Scholar
  69. Peiffer, R., Darby, L. A., Fullenkamp, A., & Morgan, A. L. (2015). Effects of acute aerobic exercise on executive function in older women. Journal of Sports Science and Medicine, 14(3), 574–583.PubMedPubMedCentralGoogle Scholar
  70. Perez, V. B., Ford, J. M., Roach, B. J., Woods, S. W., McGlashan, T. H., Srihari, V. H., … Mathalon, D. H. (2012). Error monitoring dysfunction across the illness course of schizophrenia. Journal of Abnormal Psychology, 121(2), 372–387. doi: 10.1037/a0025487.
  71. Rabella, M., Grasa, E., Corripio, I., Romero, S., Mananas, M. A., Antonijoan, R. M., … Riba, J. (2016). Neurophysiological evidence of impaired self-monitoring in schizotypal personality disorder and its reversal by dopaminergic antagonism. Neuroimage: Clinical, 11, 770–779. doi: 10.1016/j.nicl.2016.05.019.
  72. Ridderinkhof, K. R., Nieuwenhuis, S., & Bashore, T. R. (2003). Errors are foreshadowed in brain potentials associated with action monitoring in cingulate cortex in humans. Neuroscience Letters, 348(1), 1–4.CrossRefPubMedGoogle Scholar
  73. Ridderinkhof, K. R., Ramautar, J. R., & Wijnen, J. G. (2009). To P(E) or not to P(E): a P3-like ERP component reflecting the processing of response errors. Psychophysiology, 46(3), 531–538. doi: 10.1111/j.1469-8986.2009.00790.x.CrossRefPubMedGoogle Scholar
  74. Ridderinkhof, K. R., van den Wildenberg, W. P., Segalowitz, S. J., & Carter, C. S. (2004). Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain and Cognition, 56(2), 129–140. doi: 10.1016/j.bandc.2004.09.016.CrossRefPubMedGoogle Scholar
  75. Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin and Review, 16(2), 225–237. doi: 10.3758/PBR.16.2.225.CrossRefPubMedGoogle Scholar
  76. Ruchsow, M., Spitzer, M., Gron, G., Grothe, J., & Kiefer, M. (2005). Error processing and impulsiveness in normals: evidence from event-related potentials. Brain Research Cognitive Brain Research, 24(2), 317–325. doi: 10.1016/j.cogbrainres.2005.02.003.CrossRefPubMedGoogle Scholar
  77. Shackman, A. J., Salomons, T. V., Slagter, H. A., Fox, A. S., Winter, J. J., & Davidson, R. J. (2011). The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Reviews Neuroscience, 12(3), 154–167. doi: 10.1038/nrn2994.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Shalgi, S., & Deouell, L. Y. (2012). Is any awareness necessary for an Ne? Frontiers in Human Neuroscience, 6, 124. doi: 10.3389/fnhum.2012.00124.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Shalgi, S., & Deouell, L. Y. (2013). Is there any electrophysiological evidence for subliminal error processing? Frontiers in Neuroscience, 7, 150. doi: 10.3389/fnins.2013.00150.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Slagter, H. A., Davidson, R. J., & Lutz, A. (2011). Mental training as a tool in the neuroscientific study of brain and cognitive plasticity. Frontiers in Human Neuroscience, 5, 17. doi: 10.3389/fnhum.2011.00017.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Slagter, H. A., Lutz, A., Greischar, L. L., Francis, A. D., Nieuwenhuis, S., Davis, J. M., & Davidson, R. J. (2007). Mental training affects distribution of limited brain resources. PLoS Biology, 5(6), e138. doi: 10.1371/journal.pbio.0050138.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Suarez-Pellicioni, M., Nunez-Pena, M. I., & Colome, A. (2013). Abnormal error monitoring in math-anxious individuals: evidence from error-related brain potentials. PloS One, 8(11), e81143. doi: 10.1371/journal.pone.0081143.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Tang, Y. Y., Holzel, B. K., & Posner, M. I. (2015). The neuroscience of mindfulness meditation. Nature Reviews Neuroscience, 16(4), 213–225. doi: 10.1038/nrn3916.CrossRefPubMedGoogle Scholar
  84. Tang, Y. Y., Lu, Q., Geng, X., Stein, E. A., Yang, Y., & Posner, M. I. (2010). Short-term meditation induces white matter changes in the anterior cingulate. Proceedings of the National Academy of Sciences of the United States of America, 107(35), 15649–15652. doi: 10.1073/pnas.1011043107.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Tang, Y. Y., Ma, Y., Wang, J., Fan, Y., Feng, S., Lu, Q., … Posner, M. I. (2007). Short-term meditation training improves attention and self-regulation. Proceedings of the National Academy of Sciences of the United States of America, 104(43), 17152–17156. doi: 10.1073/pnas.0707678104.
  86. Tang, Y. Y., & Posner, M. I. (2013). Tools of the trade: theory and method in mindfulness neuroscience. Social Cognitive Affective Neuroscience, 8(1), 118–120. doi: 10.1093/scan/nss112.CrossRefPubMedGoogle Scholar
  87. Taylor, S. F., Stern, E. R., & Gehring, W. J. (2007). Neural systems for error monitoring: recent findings and theoretical perspectives. The Neuroscientist, 13(2), 160–172. doi: 10.1177/1073858406298184.CrossRefPubMedGoogle Scholar
  88. Taylor, V. A., Grant, J., Daneault, V., Scavone, G., Breton, E., Roffe-Vidal, S., … Beauregard, M. (2011). Impact of mindfulness on the neural responses to emotional pictures in experienced and beginner meditators. Neuroimage, 57(4), 1524–1533. doi: 10.1016/j.neuroimage.2011.06.001.
  89. Teper, R., & Inzlicht, M. (2013). Meditation, mindfulness and executive control: the importance of emotional acceptance and brain-based performance monitoring. Social Cognitive Affective Neuroscience, 8(1), 85–92. doi: 10.1093/scan/nss045.CrossRefPubMedGoogle Scholar
  90. Ullsperger, M., Harsay, H. A., Wessel, J. R., & Ridderinkhof, K. R. (2010). Conscious perception of errors and its relation to the anterior insula. Brain Structure and Function, 214(5–6), 629–643. doi: 10.1007/s00429-010-0261-1.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Vidal, F., Burle, B., Bonnet, M., Grapperon, J., & Hasbroucq, T. (2003). Error negativity on correct trials: a reexamination of available data. Biological Psychology, 64(3), 265–282.CrossRefPubMedGoogle Scholar
  92. Vidal, F., Hasbroucq, T., Grapperon, J., & Bonnet, M. (2000). Is the 'error negativity' specific to errors? Biological Psychology, 51(2–3), 109–128.CrossRefPubMedGoogle Scholar
  93. Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: the PANAS scales. Journal of Personality and Social Psychology, 54(6), 1063–1070.CrossRefPubMedGoogle Scholar
  94. Zanesco, A. P., King, B. G., Maclean, K. A., & Saron, C. D. (2013). Executive control and felt concentrative engagement following intensive meditation training. Frontiers in Human Neuroscience, 7, 566. doi: 10.3389/fnhum.2013.00566.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Zhao, E., Tranovich, M. J., DeAngelo, R., Kontos, A. P., & Wright, V. J. (2015). Chronic exercise preserves brain function in masters athletes when compared to sedentary counterparts. The Physician and Sportsmedicine, 1–6. doi: 10.1080/00913847.2016.1103641.

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Catherine I. Andreu
    • 1
    • 2
  • Cristóbal Moënne-Loccoz
    • 3
  • Vladimir López
    • 1
    • 2
  • Heleen A. Slagter
    • 4
    • 5
  • Ingmar H. A. Franken
    • 6
  • Diego Cosmelli
    • 1
    • 2
  1. 1.Escuela de PsicologíaPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Centro Interdisciplinario de NeurocienciasPontificia Universidad Católica de ChileSantiagoChile
  3. 3.Departamento de Ciencias de la Computación, Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile
  4. 4.Department of PsychologyUniversity of AmsterdamAmsterdamThe Netherlands
  5. 5.Amsterdam Brain and CognitionUniversity of AmsterdamAmsterdamThe Netherlands
  6. 6.Department of Psychology, Education & Child StudiesErasmus University RotterdamRotterdamThe Netherlands

Personalised recommendations