Mycosilver Nanoparticles: Synthesis, Characterization and its Efficacy against Plant Pathogenic Fungi

  • Tahira Akther
  • S. HemalathaEmail author


The fungicides used to control plant pathogenic fungi not only kill the fungi but also affect other flora and fauna in the field. To preserve beneficial flora, novel strategies and alternative approaches should be identified. Bio-pesticides are used as an alternative to chemical fungicides. The development of nanotechnology-based fungicides and pesticides are considered as promising alternatives to preserve the biota. At the global level, researchers are working on nanoemulsion and nanofungicides to control plant pathogenic fungi; however, farmers are unaware about these nano-based fungicides. Metal nanoparticles can act as potential fungicides when compared to the conventional chemical fungicides. Hence, our current study is based on utilization of the myco-nanoparticles synthesized from endophytic fungi isolated from Solanum nigrum. The mycosilver nanoparticles are characterized by SEM, TEM and EDAX analysis. The results of the study exhibited the silver nanoparticles were of different morphological shapes including spherical, cylindrical and loosely agglomerated with an average size of 2–50 nm. Further, the plant pathogenic fungi including Fusarium graminearum, Fusarium udum, Rhizoctonia solani and Aspergillus niger were treated with mycosilver nanoparticles to test the efficacy to control plant pathogens, and showed broad spectrum antifungal activity against the phytopathogens by inhibiting the radial growth.


Endophytic fungi Silver nanoparticles Antifungal activity Phytopathogens 



We are highly thankful to B. S. Abdur Rahman Crescent Institute of Science and Technology for providing the facilities.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12668_2019_607_MOESM1_ESM.docx (60 kb)
Fig. S1 (DOCX 60 kb)


  1. 1.
    Kaur, P., Thakur, R., et al. (2016). Biogenesis of copper nanoparticles using peel extract of Punicagranatumand their antimicrobial activity against opportunistic pathogens. Green Chemistry Letters and Reviews, 9, 33–38.CrossRefGoogle Scholar
  2. 2.
    Ge, S., & Zhang, L. (2011). Efficient visible light driven photocatalytic removal of RhB and NO with low temperature synthesized in(OH)xSy hollow nanocubes: A comparative study. Environmental Science & Technology, 45, 3027–3033.CrossRefGoogle Scholar
  3. 3.
    Ravindran, A., Chandran, P., & Khan, S. S. (2013). Biofunctionalized silver nanoparticles: Advances and prospects. Colloids and Surfaces B: Biointerfaces, 105, 342–352. Scholar
  4. 4.
    Singh, P., Kim, Y. J., et al. (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 34, 588–599.CrossRefGoogle Scholar
  5. 5.
    Bansal, P., Duhan, J. S., & Gahlawat, S. K. (2014). Biogenesis of nanoparticles: A review. African Journal of Biotechnology, 13, 2778–2785.CrossRefGoogle Scholar
  6. 6.
    Kaur, P., Thakur, R., Kumar, S., et al. (2011). Interaction of ZnO nanoparticleswith foodborne pathogens Escherichia coli DH5and Staphylococcus aureus 5021 & their bactericidal efficacy. AIP Conference Proceedings, 1393, 153–154.CrossRefGoogle Scholar
  7. 7.
    Kaur, P., Thakur, R., Barnela, M., et al. (2015). Synthesis, characterization and in vitro evaluation of cytotoxicity and antimicrobial activity of chitosan-metal nanocomposites. Journal of Chemical Technology and Biotechnology, 90, 867–873.CrossRefGoogle Scholar
  8. 8.
    Atanu, F. O., Ebiloma, U. G., & Ajayi, E. I. (2011). A review of the pharmacological aspects of Solanum nigrum Linn. Biotechnology and Molecular Biology Reviews, 6, 001–007.Google Scholar
  9. 9.
    Musto, M. (2015). Preliminary report on antifungal activity of a Solanum nigrum extract against five mycotoxin-producing fungi. Emirates Journal of Food and Agriculture, 27(11), 825–830. Scholar
  10. 10.
    Kharwar, R. N., Verma, V. C., & Gange, A. C. (2010). Biosynthesis of antimicrobial silver nanoparticle by endophytic fungusAspergillus clavatus. Nanomedicine, 5(1), 33–40.CrossRefGoogle Scholar
  11. 11.
    Sang, W. K., Jin, H. J., Kabir, L., et al. (2012). Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic Fungi. The Korean Journal of Mycology, 40(1), 53–58.Google Scholar
  12. 12.
    Yee, S. L., Yung, C. C., & Hui, H. C. (2018). Silver nanoparticle biosynthesis by using phenolic acids in rice husk extract as reducing agents and dispersants. Journal of Food and Drug Analysis, 26, 649–656.CrossRefGoogle Scholar
  13. 13.
    Sahar, M. O. (2014). Antifungal activity of silver and copper nanoparticles on two plant pathogens. Alternaria alternate and Botrytis cinerea. Research Journal of Microbiology, 9(1), 34–42.CrossRefGoogle Scholar
  14. 14.
    Kaur, P., Thakur, R., Duhana, J. S., et al. (2018). Management of wilt disease of chickpea in vivo by silver nanoparticles biosynthesized by rhizospheric microflora of chickpea (Cicerarietinum). Journal and Chemical Technology and Biotechnology.
  15. 15.
    Hoog, S. L., Cheng, Y., Elpers, J., et al. (2013). Duloxetine and pregnancy outcomes: Safety surveillance findings. International Journal of Medical Sciences, 10, 413–419.CrossRefGoogle Scholar
  16. 16.
    Stirling, D. (2003). DNA extraction from fungi, yeast and bacteria. In J. M. S. Bartlett & D. Stirling (Eds.), PCR protocols: Methods in molecular biology (pp. 53–54). Totowa: Humana Press.Google Scholar
  17. 17.
    White, T., Bruns, T., Lee, S., et al. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetic. In M. Innis, D. Gelfand, J. Shinsky, & T. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). San Diego: Academic Press.Google Scholar
  18. 18.
    Bansal, P., Kaur, P., & Duhan, J. S. (2017). Biogenesis of silver nanoparticles using Fusarium pallidoroseum and its potential against human pathogens. Annals of Biology, 33(2), 180–185.Google Scholar
  19. 19.
    Sastry, M. (2006). Extracellular biosynthesis of magnetite using fungi. Small, 2, 135–141.CrossRefGoogle Scholar
  20. 20.
    Akther, T., Khan, M. S., & Hemalatha, S. (2018). A facile and rapid method for green synthesis of silver Myco nanoparticles using endophytic. International Journal of Nano Dimension, 9(4), 435–441.Google Scholar
  21. 21.
    Song, J. Y., Jang, H. K., & Kim, B. S. (2009). Biological synthesis of gold nanoparticles using Magnoliakobus and Diopyros kaki leaf extracts. Process Biochemistry, 44, 1133–1138.CrossRefGoogle Scholar
  22. 22.
    Akther, T., Khan, M. S., & Hemalatha, S. (2018). Novel silver nanoparticles synthesized from the anthers of Couropita guianensis Abul. Control growth and biofilm formation in human pathogens. Nano Biomedicine and Engineering, 10(3), 250–257.CrossRefGoogle Scholar
  23. 23.
    Makarov, V. V., Love, A. J., Sinitsyna, O. V., & Makarova, S. S. (2014). “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae, 6, 35–44.Google Scholar
  24. 24.
    Vogt, C., Pernemalm, M., Kohonen, P., Laurent, S., Hultenby, K., Vahter, M., Lehtio, J., Toprak, M. S., & Fadeel, B. (2015). Proteomics analysis reveals distinct corona composition on magnetic nanoparticles with different surface coatings: Implications for interactions with primary human macrophages. PLoS One, 10, e0129008.CrossRefGoogle Scholar
  25. 25.
    Galeano, B., Korff, E., & Nicholson, W. L. (2003). Inactivation of vegetative cells, but not spores, of Bacillus anthracis, B. cereus and B. subtilis on stainless steel surfaces coated with an antimicrobial Silver-and Zinc-containing zeolite formulation. Applied and Environmental Microbiology, 69, 4329–4331.CrossRefGoogle Scholar
  26. 26.
    Takai, K., Ohtsuka, T., Senda, Y., Nakao, M., Yamamoto, K., Matsuoka, J., & Hirai, Y. (2002). Antibacterial properties of antimicrobial-finished textile products. Microbiology and Immunology, 46, 75–81.CrossRefGoogle Scholar
  27. 27.
    Min, J. S., Kim, K. S., Kim, S. w., Jung, J. H., & Lamsal, K. (2009). Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathology Journal, 25, 376–338.CrossRefGoogle Scholar
  28. 28.
    Aguilar-Mendez, M. A., Martin-Martinez, E. S., Ortega-Arroyo, L., Cobian-Portillo, G., & Sanchez-Espindola, E. (2011). Synthesis and characterization of silver nanoparticles: Effect on phytopathogen Colletotrichum gloesporioides. Journal of Nanoparticle Research, 13, 2525–2532.CrossRefGoogle Scholar
  29. 29.
    Hwang, E. T., Lee, J. H., Chae, Y. J., Kim, Y. S., Kim, B. C., Sang, B. I., & Gu, M. B. (2008). Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small, 4, 746–750.CrossRefGoogle Scholar
  30. 30.
    Krishnaraj, C., Ramachandran, R., Mohan, K., et al. (2012). Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 93, 95–99.CrossRefGoogle Scholar
  31. 31.
    Fayaz, A. M., Balaji, K., Kalaichelvan, P. T., et al. (2009). Fungal based synthesis of silver nanoparticles an effect of temperature on the size of particles. Colloids and Surfaces B, 74, 123–126.CrossRefGoogle Scholar
  32. 32.
    Gupta, M., & Vyas, S. P. (2012). Development, characterization and in vivo assessment of effective lipidic nanoparticles for dermal delivery of fluconazole against cutaneous candidiasis. Chemistry and Physics of Lipids, 165, 454–461.CrossRefGoogle Scholar
  33. 33.
    Kim, S. W., Kim, S. K., & Lamsal, K. (2009). An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. Journal of Microbiology and Biotechnology, 19(8), 760–764.Google Scholar
  34. 34.
    Danilczuk, M., Lund, A., Sadlo, J., Yamada, H., & Michalik, J. (2006). Conduction electron spin resonance of small silver particles. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 63(1), 189–191.CrossRefGoogle Scholar
  35. 35.
    Kim, S. J., Kuk, E., & Yu, K. N. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), 95–101.CrossRefGoogle Scholar
  36. 36.
    Fravel, D. R. (2005). Commercialization and implementation of biocontrol. Annual Review of Phytopathology, 43, 337–359. Scholar
  37. 37.
    Gopinath, V., Priyadarshini, S., Failoke, M., Arunkumar, J., Enricho, M., MubarakAli, D., Velusamy, P., & Jamuna, V. (2015). Biogenic synthesis, characterization of antibacterial silver nanoparticles and its cell cytotoxicity. Arabian Journal of Chemistry, 10(8), 1107–1117.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Life SciencesB. S. Abdur Rahman Crescent Institute of Science and TechnologyChennaiIndia

Personalised recommendations