Green Synthesis, Characterization, and Investigation Antibacterial Activity of Silver Nanoparticles Using Pistacia atlantica Leaf Extract

  • Roonak GolabiazarEmail author
  • Karwan Ismael Othman
  • Karzan Mohammed Khalid
  • Dlgash Hammad Maruf
  • Sharmin Mustafa Aulla
  • Pshtiwan Abdullah Yusif


The present article reports on a simple, economical, and green preparative strategy for synthesis silver nanoparticle with Pistacia atlantica leaf extract as a reductant, stabilizer, and capping agent. The green AgNPs were characterized by ultraviolet-visible (UV-Vis) spectrometer, energy dispersive X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDX), and Fourier transform infrared (FTIR) spectrophotometer. The XRD pattern provided evidence for the formation of face-centered cubic structure with an average size of 17–18 nm. UV-Vis and FTIR were used to identify the biomolecules and capping reagents in the Pistacia atlantica leaf extract that may be responsible for the reduction of silver ions and the stability of the bioreduced nanoparticles. This work proved the capability of using biomaterial towards the synthesis of silver nanoparticle, by adopting the principles of green chemistry. In addition, the antibacterial activity of biologically synthesized nanoparticles was proved against gram-positive (Streptococcus pyogenes and Staphylococcus aureus) and gram-negative (Salmonella paratyphi B, Klebsiella pneumonia, Escherichia coli, and Pseudomonas aeruginosa) bacteria.


Green synthesis Silver nanoparticles Antibactrial activity Gram-positive bacteria Gram negative bacteria Plant extract Pistacia atlantica Capping agent 



The authors would like to thank research center at Soran University for taken the SEM, FTIR, and UV-Vis spectra. Also Faculty of Biology for assistance with antimicrobial tests and for the constructive discussions.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Allafchian, A. R., Bahramian, H., Jalali, S. A. H., & Ahmadvand, H. (2015). Synthesis, characterization and antibacterial effect of new magnetically core–shell nanocomposites. Journal of Magnetism and Magnetic Materials, 394(2), 318–324.Google Scholar
  2. 2.
    Allafchian, A. R., & Jalali, S. A. H. (2015). Synthesis, characterization and antibacterial effect of poly (acrylonitrile/maleic acid)–silver nanocomposite. Journal of the Taiwan Institute of Chemical Engineers, 57(1), 154–159.Google Scholar
  3. 3.
    Song, J. Y., & S, K. B. (2008). Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering, 32(2), 79–84.MathSciNetGoogle Scholar
  4. 4.
    Aparna, G. S., Subbaiah, K. V., Saigopal, D. V. R., Subba Rao, Y., & Varada Reddy, A. (2014). Efficient and robust bio fabrication of silver nanoparticles by Cassia alata leaf extract and their antimicro-bial activity. Journal of Nanostructure in Chemistry, 82(1), 1–9.Google Scholar
  5. 5.
    Krishnaraj, C., Jagan, E. G., Rajasekar, S., Selvakumar, P., & Kalaichelvan, P. T. (2010). Synthesis of silver nanoparticles using Acalyphaindica leaf extracts and its antibacterial activity against water borne pathogens. Colloids and Surfaces B: Biointerfaces, 76(1), 50–56.Google Scholar
  6. 6.
    Allafchian, A. R., Mirahmadi-Zare, S. Z., Jalali, S. A. H., Hashemi, S. S., & Vahabi, M. R. (2016). Green synthesis of silver nanoparticles using phlomis leaf extract and investigation of their antibacterial activity. Journal of Nanostructure in Chemistry, 6(2), 129–135.Google Scholar
  7. 7.
    Shiraishi, Y., & Toshima, N. (2000). Oxidation of ethylene catalyzed by colloidal dispersions of poly (sodium acrylate)-protected silver nanoclusters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 169(1), 59–66.Google Scholar
  8. 8.
    Gurunathan, S., Park, J. H., Han, J. W., & Kim, J. H. (2015). Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: Targeting p53 for anticancer therapy. International Journal of Nanomedicine, 29(2), 4203–4222.Google Scholar
  9. 9.
    Li, W. R., Xie, X. B., Shi, Q. S., Zeng, H. Y., Ou-Yang, Y. S., & Chen, Y. B. (2010). Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Applied Microbiology and Biotechnology, 85(4), 1115–1122.Google Scholar
  10. 10.
    Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., & Sainkar, S. R. (2001). Ungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Letters., 1(10), 515–519.Google Scholar
  11. 11.
    Chang, L. T. (1995). Studies on the preparation and properties of conductive polymers. VIII. Use of heat treatment to prepare metallized films from silver chelate of PVA and PAN. Journal of Applied Polymer Science, 55(5), 371–374.Google Scholar
  12. 12.
    Khan, Z., Al-Thabaiti, S. A., Obaid, A. Y., & Al-Youbi, A. O. (2011). Preparation and characterization of silver nanoparticles by chemical reduction method. Colloids and Surfaces B: Biointerfaces, 82(2), 513–517.Google Scholar
  13. 13.
    Liz-Marzan, L. M., & Lado-Tourino, I. (1996). Reduction and stabilization of silver nanoparticles in ethanol by nonionic surfactants. Langmuir, 12(15), 3585–3589.Google Scholar
  14. 14.
    Navaladian, S., Viswanathan, B., Viswanath, R. P., & Varadarajan, T. K. (2007). Thermal decomposition as route for silver nanoparticles. Nanoscale Research Letters, 2(1), 44–48.Google Scholar
  15. 15.
    Esumi, K., Tano, T., Torigoe, K., & Meguro, K. (1990). Preparation and characterization of biometallic Pd-cu colloids by thermal decomposition of their acetate compounds in organic solvents. Journal of Materials Chemistry A, 2(5), 564–567.Google Scholar
  16. 16.
    Pileni, M. P. (2000). Fabrication and physical properties of self-organized silver nanocrystals. Pure and Applied Chemistry, 72(1), 53–65.Google Scholar
  17. 17.
    Sun, Y. P., Atorngitjawat, P., & Meziani, M. J. (2001). Preparation of silver nanoparticles via rapid expansion of water in carbon dioxide microemulsion into reductant solution. Langmuir, 17(19), 5707–5710.Google Scholar
  18. 18.
    Henglein, A. (1998). Colloidal silver nanoparticles: Photochemical preparation and interaction with O2, CCl4, and some metal ions. Journal of Materials Chemistry, 10(1), 444–446.Google Scholar
  19. 19.
    Fatimah, I. (2016). Green synthesis of silver nanoparticles using extrac of Parkia speciosa Hassk pods assisted by microwave irradiation. Journal of Advanced Research, 7(6), 961–969.Google Scholar
  20. 20.
    Kahrilas, G. A., Haggren, W., Read, R. L., Wally, L. M., & Fredrick, S. J. (2014). Investigation of antibacterial activity by silver nanoparticles prepared by microwave-assisted green syntheses with soluble starch, dextrose, and arabinose. ACS Sustainable Chemistry & Engineering, 2(4), 590–598.Google Scholar
  21. 21.
    Yin, H. B., Yamamoto, T., Wada, Y., & Yanagida, S. (2004). Large scale and size controlled synthesis of silver nanoparticles under microwave irradiation. Materials Chemistry and Physics, 83(1), 66–70.Google Scholar
  22. 22.
    Raveendran, P., Fu, J., & Wallen, S. L. (2006). A simple and “green” method for the synthesis of au, ag, and au-ag alloy nanoparticles. Green Chemistry, 8(1), 34–38.Google Scholar
  23. 23.
    Armendariz, V., Gardea-Torresdey, J. L., Jose Yacaman, M., Gonzalez, J., Herrera, I., & Parsons, J. G. (2002). Gold nanoparticle formation by oat and wheat biomasses. Proceedings of Conference on Application of Waste Remediation Technologies to Agricultural Contamination of. Water Resources, 2(1), 397–401.Google Scholar
  24. 24.
    Kharissova, O. V., Dias, H. V., Kharisov, B. I., Perez, B. O., & Perez, V. M. J. (2013). The greener synthesis of nanoparticles. Trends in Biotechnology, 31(4), 240–248.Google Scholar
  25. 25.
    Joseph, S., & Mathew, B. (2015). Microwave-assisted green synthesis of silver nanoparticles and the study on catalytic activity in the degradation of dyes. Journal of Molecular Liquids, 204(2), 184–191.Google Scholar
  26. 26.
    Klaus, T., Joerger, R., Olsson, E., & Granqvist, C. G. (1999). Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences of the United States, 96(24), 13611–13614.Google Scholar
  27. 27.
    Konishi, Y., & Uruga, T. B. (2007). Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. Journal of Biotechnology, 128(3), 648–653.Google Scholar
  28. 28.
    Willner, I., Baron, R., & Willner, B. (2006). Growing metal nanoparticles by enzymes. Advanced Materials, 18(9), 1109–1120.Google Scholar
  29. 29.
    Siddiqui, M., Redhwi, H., Achilias, D., Kosmidou, E., Vakalopoulou, E., & Ioannidou, M. (2018). Green synthesis of silver nanoparticles and study of their antimicrobial properties. Journal of Polymers and the Environment, 26(2), 423–433.Google Scholar
  30. 30.
    Ahmad, N., Sharma, S., Singh, V. N., Shamsi, S. F., Fatma, A., & Mehta, B. R. (2011). Biosynthesis of silver nanoparticles from Desmodium triflorum: A novel approach towards weed utilization. Biotechnology Research International, 4, 1),1–1),8.Google Scholar
  31. 31.
    Velusamy, P., Das, J., & Pachaiappan, R. (2015). Greener approach for synthesis of antibacterial silver nanoparticles using aqueous solution of neem gum (Azadirachta indica L.). Industrial Crops and Products, 66(2), 103–109.Google Scholar
  32. 32.
    Fang, P., Yanyan, H., Zhiguang, Y., Hao, Q., & Jinsong, R. (2018). Nucleotide-based assemblies for green synthesis of silver nanoparticles with controlled localized surface plasmon resonances and their applications. ACS Applied Materials & Interfaces, 10(12), 9929–9937.Google Scholar
  33. 33.
    Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of au, ag, and bimetallic au core-ag shell nanoparticles using neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275(2), 496–502.Google Scholar
  34. 34.
    Veisi, H., Faraji, A. R., Hemmati, S., & Gil, A. (2015). Green synthesis of palladium nanoparticles using Pistacia atlantica kurdica gum and their catalytic performance in Mizoroki–heck and Suzuki–Miyaura coupling reactions in aqueous solutions. Applied Organometallic Chemistry, 29(8), 517–523.Google Scholar
  35. 35.
    Bozorgi, M., Memariani, Z., Mobli, M., Salehi Surmaghi, M. H., Shams-Ardekani, M. R., & Rahimi, R. (2013). Five Pistacia species (P. Vera, P. Atlantica, P. Terebinthus, P. Khinjuk,and P. Lentiscus): A review of their traditional uses, phytochemistry, and pharmacology. The Scientific World Journal, 2013(5), 1–33.Google Scholar
  36. 36.
    Samavati, V., & Adeli, M. (2014). Isolation and characterization of hydrophobic compounds from carbohydrate matrix of Pistacia atlantica. Carbohydrate Polymers, 101(3), 890–896.Google Scholar
  37. 37.
    Ahmed, Z. B., Yousfi, M., Viaene, J., & Dejaegher, B. (2016). Antioxidant activities of Pistacia atlantica extracts modeled as a function of chromatographic fingerprints in order to identify antioxidant markers. Microchemical Journal, 128(6), 208–217.Google Scholar
  38. 38.
    Gourine, N., Yousfi, M., Bombarda, I., Nadjemi, B., Stocker, P., & Gaydou, E. M. (2010). Antioxidant activities and chemical composition of essential oil of Pistacia atlantica from Algeria. Industrial Crops and Products, 31(2), 203–208.Google Scholar
  39. 39.
    Viswadevarayalu, A., Venkata, R., Venu, G., Sumalatha, J., & Adinarayana, R. (2015). Facile green synthesis of silver nanoparticles using Limonia Acidissima leaf extract and its antibacterial activity. BioNanoScience, 5(2), 433–444.Google Scholar
  40. 40.
    Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7(1), 17–28.Google Scholar
  41. 41.
    Ponarulselvam, S., Panneerselvam, C., Murugan, K., Aarthi, N., Kalimuthu, K., & Thangamani, S. (2012). Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pacific Journal of Tropical Biomedicine, 2(7), 574–580.Google Scholar
  42. 42.
    Castellanos Gil, E., Colarte, A. I., Ghzaoui, A. E., Durand, D., Delarbre, J. L., & Bataille, B. (2008). A sugar cane native dextran as an innovative functional excipient for the development of pharmaceutical tablets. European Journal of Pharmaceutics and Biopharmaceutic, 68(2), 319–329.Google Scholar
  43. 43.
    Banerjee, P., Satapathy, M., Mukhopahayay, A., & Das, P. (2014). Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: Synthesis, characterization, antimicrobial property and toxicity analysis. Bioresources Bioprocessing, 1(4), 1–10.Google Scholar
  44. 44.
    Lin, L., Wang, W., Huang, J., Li, Q., Sun, D., & Yang, X. (2010). Nature factory of silver nanowires: Plantmediated synthesis using broth of Cassia fistula leaf. Chemical Engineering Journal, 162(2), 852–858.Google Scholar
  45. 45.
    Zayed, M. F., Eisa, W. H., & Shabaka, A. A. (2012). Malva parviflora extract assisted green synthesis of silver nanoparticles. Spectrochim Acta Part A: Mol. Biomol Spectrosc, 98(7), 423–428.Google Scholar
  46. 46.
    Roy, S., & Das, T. K. P. (2015). Lant mediated green synthesis of silver nanoparticles – A review. International Journal of Plant Biology & Research, 3(3), 1044–1055.Google Scholar
  47. 47.
    Koseoglu, Y., Alan, F., Tan, M., Yilgin, R., & Ozturk, M. (2012). Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceramics International, 38(5), 3625–3634.Google Scholar
  48. 48.
    Partha, P. G., Hanif, A. C., & Vijayanand, S. M. (2013). Sonochemical synthesis and characterization of manganese ferrite nanoparticles. Industrial and Engineering Chemistry Research, 52(50), 17848–17855.Google Scholar
  49. 49.
    Cullity, B. D. (1978). Elements of x-ray diffraction (2nd ed.). Philippines: Addison-Wesley.Google Scholar
  50. 50.
    Prabhu, Y. T., Venkateswara Rao, K., Kumari, B. S., Kumar, V. S., & Pavani, T. (2015). Synthesis of Fe3O4 nanoparticles and its antibacterial application. International Nano Letters, 5(2), 85–92.Google Scholar
  51. 51.
    He, Y., Ingudam, S., Reed, S., Gehring, A., & Strobaugh, T. (2016). Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. Journal of Nanobiotechnology, 14(1), 54–60.Google Scholar
  52. 52.
    Yousefi, A., Seyyed Ebrahimi, S. A., Seyfoori, A., & Mahmoodzadeh Hossein, H. (2017). Maghemite nanorods and nanospheres: Synthesis and comparative physical and biological properties. BioNanoScience, 8(3), 95–104.Google Scholar
  53. 53.
    Lee, H. L., Molla, M. N., Cantor, C. R., & Collins, J. J. (2010). Bacterial charity work leads to population-wide resistance. Nature, 467(7611), 82–86.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceSoran University, Kurdistan Regional GovernmentSoranIraq
  2. 2.Department of Biology, Faculty of ScienceSoran University, Kurdistan Regional GovernmentSoranIraq
  3. 3.Department of Chemistry, Faculty of SciencSalahaddin University, Kurdistan Regional GovernmentSalahaddinIraq

Personalised recommendations