Advertisement

Hepatoprotective Effect of Inonotus obliquus Melanins: In Vitro and In Vivo Studies

  • A. A. ParfenovEmail author
  • A. B. Vyshtakalyuk
  • M. A. Sysoeva
  • E. V. Sysoeva
  • A. D. Latipova
  • L. F. Gumarova
  • V. V. Zobov
Article
  • 23 Downloads

Abstract

The purpose of this study is to identify hepatoprotective properties of melanins from aqueous extracts of Inonotus obliquus distinguished by microwave modes used in extraction in both in vitro and in vivo studies. In vitro tests were used in studies of the effect of Chaga mushroom melanins on the vitality of cells of a normal human hepatocyte line Chang Liver, as well as their hepatoprotective effect and influence on the cell cycle. The hepatoprotective effect was studied in the context of the influence of the toxicant d-galactosamine, at a concentration of 150 mM. The results show that the melanin of the aqueous extract of Chaga, obtained in the process of microwave-assisted extraction at 180 W, at concentrations of 10−5 and 10−3 g/l, displays a hepatoprotective effect, as it increases the vitality of cells under the toxic influence of d-galactosamine by 2–2.5 times. In vivo tests were used in studies of the hepatoprotective properties of the melanin of the aqueous extract of Chaga obtained in the process of microwave-assisted extraction at 180 W on white male Sprague Dawley rats. The melanin was administered to rats for 14 days at a dose of 100 mg/kg. Toxic damage was inflicted on the liver using carbon tetrachloride on days 5 to 12 of administering the melanin; the liver was studied and the blood biochemical parameters were determined on day 15. It was shown that melanin produces a hepatoprotective effect which is expressed in the minimization of liver injury signs such as steatosis, necrosis, fat accumulation, and normalization of the total and unconjugated bilirubin, total protein, serum cholinesterase, and gamma-glutamyl transpeptidase levels.

Keywords

Toxic hepatitis Liver injury Carbon tetrachloride Cell line of hepatocytes Chang Liver Melanin of Inonotus obliquus 

Notes

Supplementary material

12668_2019_595_MOESM1_ESM.pptx (2.4 mb)
ESM 1 (PPTX 2484 kb)

References

  1. 1.
    Li, S., Tan, H. Y., Wang, N., et al. (2015). The role of oxidative stress and antioxidants in liver diseases. International Journal of Molecular Sciences, 16(11), 26087–26124.CrossRefGoogle Scholar
  2. 2.
    Mbarki, S., Alimi, H., Bouzenna, H., Elfeki, A., & Hfaiedh, N. (2017). Phytochemical study and protective effect of Trigonella foenum graecum (Fenugreek seeds) against carbon tetrachloride-induced toxicity in liver and kidney of male rat. Biomedicine & Pharmacotherapy, 88, 19–26.CrossRefGoogle Scholar
  3. 3.
    Weber, L. W., Boll, M., & Stampfl, A. (2003). Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Critical Reviews in Toxicology, 33(2), 105–136.CrossRefGoogle Scholar
  4. 4.
    Soni, B., Visavadiya, N. P., & Madamwar, D. (2008). Ameliorative action of cyanobacterial phycoerythrin on CCl4-induced toxicity in rats. Toxicol, 248(1), 59–65.CrossRefGoogle Scholar
  5. 5.
    Vyshtakalyuk, A. B., Semenov, V. E., Sudakov, I. A., et al. (2018). Derivatives of drug Xymedon with biogenic acids. Antioxidative properties of Xymedon derivative with ascorbic acid. Russian Chemical Bulletin, 67(4), 705–711.CrossRefGoogle Scholar
  6. 6.
    Shashkina, M. Y., Shashkin, P. N., & Sergeev, A. V. (2006). Chemical and medicobiological properties of chaga (review). Pharmaceutical Chemistry Journal, 40(10), 560–568.CrossRefGoogle Scholar
  7. 7.
    Zhuravleva, T. B., & Spalva, E. A. (1959). Effect of chaga on dystrophic changes in the liver caused by carbon tetrachloride. Chaga and its therapeutic use in stage IV cancer (pp. 132–140). Moscow: Medgiz.Google Scholar
  8. 8.
    Ivanova, G. A., Sysoeva, M. A., & Zobov, V. V. (2013). Hepatoprotective properties of chaga melanins. Butlerov Communications, 35(9), 84–89.Google Scholar
  9. 9.
    Kuznetsova, O. Y., Abdullin, I. S., Shaekhov, M. F. et al. (2016). Investigation of Inonotus obliquus (Pers.) Pil. Extracts and Melanins after RF-plasma treatment of raw material. Uchenye Zapiski Kazanskogo Universiteta. Seria Estestvennye Nauki 158(1), 23–33.Google Scholar
  10. 10.
    Burmasova, M. A., & Sysoeva, M. A. (2017). Chemical composition and biological activity of the BuOH fraction from chaga melanin. Pharmaceutical Chemistry Journal, 51(4), 292–294.CrossRefGoogle Scholar
  11. 11.
    Glamočlija, J., Ćirić, A., Nikolić, M., et al. (2015). Chemical characterization and biological activity of Chaga (Inonotus obliquus), a medicinal “mushroom”. Journal of Ethnopharmacology, 162, 323–332.CrossRefGoogle Scholar
  12. 12.
    Ning, X., Luo, Q., Li, C., et al. (2014). Inhibitory effects of a polysaccharide extract from the chaga medicinal mushroom, Inonotus obliquus (higher Basidiomycetes), on the proliferation of human neurogliocytoma cells. International Journal of Medicinal Mushrooms, 16(1), 29–36.CrossRefGoogle Scholar
  13. 13.
    Mishra, S. K., Kang, J. H., Song, K. H., et al. (2013). Inonotus obliquus suppresses proliferation of colorectal cancer cells and tumor growth in mice models by downregulation of β-catenin/NF-κB-signaling pathways. European Journal of Information Systems, 11(3), 615–629.Google Scholar
  14. 14.
    Sysoeva, M. A. (2017). Highly dispersed colloidal systems and melanin chaga. Moscow: Litres.Google Scholar
  15. 15.
    Nosanchuk, J. D., Stark, R. E., & Casadevall, A. (2015). Fungal melanin: what do we know about structure? Frontiers in Microbiology, 6, 1463.Google Scholar
  16. 16.
    Kukulyanskaya, Т. А., Kurchenko, N. V., Kurchenko, V. P., & Babitskaya, V. G. (2002). Physicochemical properties of melanins produced by the sterile form of Inonotus obliquus (“Chagi”) in natural and cultivated fungus. Applied Biochemistry and Microbiology, 38(1), 58–61.CrossRefGoogle Scholar
  17. 17.
    Sysoeva M.A., Sysoeva E.V., Sysoeva A.V., & Gamayurova V.S. (2010) The method of obtaining water extracts of Chaga. Patent of the Russian Federation No 2406514. http://www.freepatent.ru/images/patents/56/2406514/patent-2406514.pdf. Accessed 20 Apr 2018.
  18. 18.
    Tusevski, O., Kostovska, A., Iloska, A., et al. (2014). Phenolic production and antioxidant properties of some Macedonian medicinal plants. Central European Journal of Biology, 9(9), 888–900.Google Scholar
  19. 19.
    Dev, U. K., Hossain, M. T., & Islam, M. Z. (2015). Phytochemical investigation, antioxidant activity and anthelmintic activity of Mikania Micrantha leaves. WJPR, 4(5), 121–133.Google Scholar
  20. 20.
    Kuryakov V. N. (2013). Measurement of dimensions of nanoparticles by the dynamic scattering of light. Fundamental and applied aspects of new highly effective materials. All-Russian Scientific Internet Conference with international participation: conference materials, 94–95. https://scholar.googleusercontent.com/scholar.bib?q=info:pmD28TbpOqAJ:scholar.google.com/&output=citation&scisig=AAGBfm0AAAAAXDoyycsAM1kbCmUE_1ZUtm5e_lWRN6F2&scisf=4&ct=citation&cd=-1&hl=ru.
  21. 21.
    Freshney, R. I. (2016). Culture of animal cells: a manual of basic technique and specialized applications, 7th edition. Hoboken, New Jersey: Wiley-Blackwell.Google Scholar
  22. 22.
    Mironov, A. N. (2012). A guide to preclinical drug research. Part One. Moscow: Grif and K.Google Scholar
  23. 23.
    National Research Council (2010). Guide for the care and use of laboratory animals. National Academies Press.Google Scholar
  24. 24.
    EC Committee guidance on management and care of animals used for experiments and other research purposes, 2007/526/EC, of June 18th 2007.Google Scholar
  25. 25.
    Yuryev, K. L. (2011). Silymarin: Effects and mechanisms of action, clinical efficacy and safety. Part III. New effects and applications. Current clinical trials. Ukraїns'kij Medichnij Chasopis, 2(82), 54–60.Google Scholar
  26. 26.
    Yuryev, K. L. (2010). Silymarin: Effects and mechanisms of action, clinical efficacy and safety. Part II. New effects and applications. Current clinical trials. Ukraїns'kij Medichnij Chasopis, 3(77), 59–66.Google Scholar
  27. 27.
    Vyshtakalyuk, A., Parfenov, A., Gumarova, L., et al. (2017). Comparative evaluation of hepatoprotective activity of Xymedon preparation derivatives with ascorbic acid and methionine. Bionanoscience, 7(4), 616–622.CrossRefGoogle Scholar
  28. 28.
    Burlakova, E. B., Conradov, A. A., & Maltseva, E. L. (2003). The effect of ultra-low doses of biologically active substances and low-intensity physical factors. Chemical Physics, 2(22), 21–40. https://scholar.googleusercontent.com/scholar.bib?q=info:5SB0AQh3zzEJ:scholar.google.com/&output=citation&scisig=AAGBfm0AAAAAXDowvNymyqWKUEHqTn6dVvZDGlGGoDBT&scisf=4&ct=citation&cd=-1&hl=ru.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. A. Parfenov
    • 1
    • 2
    Email author
  • A. B. Vyshtakalyuk
    • 1
  • M. A. Sysoeva
    • 2
  • E. V. Sysoeva
    • 2
  • A. D. Latipova
    • 2
  • L. F. Gumarova
    • 1
  • V. V. Zobov
    • 1
    • 3
  1. 1.Laboratory of Chemical and Biological Researches of A.E. Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center of Russian Academy of SciencesKazanRussia
  2. 2.Kazan National Research Technological UniversityKazanRussia
  3. 3.Institute of Environmental SciencesKazan Federal UniversityKazanRussia

Personalised recommendations