Advertisement

Efficacy of Juniperus procera Constituents with Silver Nanoparticles Against Aspergillus fumigatus and Fusarium chlamydosporum

  • Marwah M. Bakri
  • Medhat A. El-Naggar
  • E. A. Helmy
  • Mona S. Ashoor
  • T. M. Abdel GhanyEmail author
Article
  • 25 Downloads

Abstract

Several plant extracts and their phytoconstituents are known as a promising alternative to chemically synthetic antimicrobial agents due to the presence of diverse active components and its limited side effects. GC-MS of Juniperus procera leaf and fruit extracts revealed the presence of various ingredients. Based on the antifungal results, leaf extract of J. procera at 100 mg/ml showed 35.83 and 44.09% growth inhibition, but increased to 50.55 and 59.06% after addition of 50 ppm silver nanoparticles (AgNPs) against Aspergillus fumigatus and Fusarium chlamydosporum, respectively. Fungal growth was induced at low concentration (25 mg/ml) and negligible inhibition was observed at 100 mg/ml of fruit extract. Nivalenol production was inhibited to 72.79% and 78.03% with using 100 mg/ml and 50 mg/ml respectively, and completely inhibited at 25 mg/ml leaf extract. Fumagillin was also completely inhibited at 25 and 50 mg/ml leaf extract, but 25 mg/ml leaf extract stimulated gliotoxin (25.96 ppm) and neosolaniol production (55.36 ppm). Nivalenol and gliotoxin production was decreased while neosolaniol completely inhibited with using J. procera fruit extract. The combination of AgNPs with J. procera fruit extract inhibited effectively the gliotoxin and nivalenol mycotoxins production than extract alone. Results indicated that there is no relationship between fungal growth and mycotoxins production. The existence of different compounds in J. procera may reflect its pharmacological properties.

Keywords

Juniperus procera Mycotoxins Fumagillin Gliotoxin Silver nanoparticles 

Notes

Compliance with Ethical Standards

Conflict of Interests

The authors declare that they have no conflict of interests.

Research Involving Human Participants or Animals

None.

Informed Consent

None.

References

  1. 1.
    Mulugeta, M., Khan, F., Gizachew, M., & Archana, P. (2019). Phytochemical profile and antimicrobial effects of different medicinal plant: current knowledge and future perspectives. Current Traditional Medicine, 5, 1.  https://doi.org/10.2174/2215083805666190730151118.CrossRefGoogle Scholar
  2. 2.
    Mesa-Arango, A. C., Trevijano-Contador, N., Roman, E., Sanchez-Fresneda, R., Casas, C., & Herrero, E. (2014). The production of reactive oxygen species is a universal action mechanism of amphotericin B against pathogenic yeasts and contributes to the fungicidal effect of this drug. Antimicrobial Agents and Chemotherapy, 58, 6627–6638.CrossRefGoogle Scholar
  3. 3.
    Abdel Ghany, T. M. (2015). Safe food additives: a review. Journal of Biological and Chemical Research, 32, 402–437.Google Scholar
  4. 4.
    Abdel Ghany, T. M., Roushdy, M. M., & Mohamed, A. A. (2015a). Efficacy of certain plant extracts as safe fungicides against phytopathogenic and mycotoxigenic fungi. Agricultural and Biological Sciences Journal, 1(3), 71–75.Google Scholar
  5. 5.
    Abdel Ghany, T. M., Shater, A. M., Negm, M. E., Al Abboud, M. A., & Elhussieny, N. I. (2015b). Efficacy of botanical fungicides against Curvularia lunata at molecular levels. Journal Plant Pathology and Microbiology, 6, 289.  https://doi.org/10.4172/2157-7471.1000289.CrossRefGoogle Scholar
  6. 6.
    Abdel Ghany, T. M., El-Naggar, M. A., Ganash, M. A., & Al Abboud, M. A. (2017). PCR identification of Aspergillus niger with using natural additives for controlling and detection of malformins and maltoryzine production by HPLC. BioNanoScience, 7, 588–596.CrossRefGoogle Scholar
  7. 7.
    Ganash, M., & Qanash, S. (2018). Phenolic acids and biological activities of Coleus forskohlii and Plectranthus barbatus as traditional medicinal plants. International Journal of Pharmacology, 14, 856–865.  https://doi.org/10.3923/ijp.2018.856.865.CrossRefGoogle Scholar
  8. 8.
    Hada, D., & Sharma, K. (2018). Isolation and characterization of chemical compounds from fruit pulp of Cassia fistula and their antimicrobial activity. Journal of Drug Delivery and Therapeutics, 8, 15–20.CrossRefGoogle Scholar
  9. 9.
    Barupal, T., Mukesh, M., & Kanika, S. (2019). Inhibitory effects of leaf extract of Lawsonia inermis on Curvularia lunata and characterization of novel inhibitory compounds by GC-MS analysis. Biotechnology Reports, 23, e00335.  https://doi.org/10.1016/j.btre.2019.e00335.CrossRefGoogle Scholar
  10. 10.
    Topçu, G., Erenler, R., Cakmak, O., Johansson, C. B., Celik, C., Chai, H. B., et al. (1999). Diterpenes from the berries of Juniperus excelsa. Phytochemistry., 50, 1195–1199.CrossRefGoogle Scholar
  11. 11.
    Samaha, H. A. M., Ali, N. A. A., Mansi, I., & Abu-El-Halawa, R. (2017). Antimicrobial, antiradical and xanthine oxidase inhibitory activities of Juniperus procera plant extracts from Albaha. World Journal of Pharmaceutical Sciences, 6(2), 232–242.Google Scholar
  12. 12.
    Burits, M., Asres, K., & Bucar, F. (2001). The antioxidant activity of the essential oils of Artemisia afra, Artemisia abyssinica and Juniperus procera. Phytotherapy Research, 15, 103–108.CrossRefGoogle Scholar
  13. 13.
    Loizzo, M. R., Tundis, R., Conforti, F., Saab, A. M., Statti, G. A., & Menichini, F. (2007). Comparative chemical composition, antioxidant and hypoglycaemic activities of Juniperus oxycedrus ssp. oxycedrus L. berry and wood oils from Lebanon. Food Chemistry, 105, 572–578.CrossRefGoogle Scholar
  14. 14.
    Lesjak, M. M., Beara, I. N., Orčić, D. Z., Anačkov, G. T., Balog, K. J., Francišković, M. M., Neda, M., & Mimica-Dukić, N. M. (2011). Juniperus sibirica Burgsdorf as a novel source of antioxidant and anti-inflammatory agents. Food Chemistry, 124, 850–856.CrossRefGoogle Scholar
  15. 15.
    Özturk, M., Tümen, I., Uğur, A., Aydoğmus, F., & Topcu, G. (2011). Evaluation of fruit extracts of six Turkish Juniperus species for their antioxidant, anticholinesterase and antimicrobial activities. Journal of the Science of Food and Agriculture, 91(5), 867–876.CrossRefGoogle Scholar
  16. 16.
    Abdel Ghany, T. M., & Hakamy, O. M. (2014). Juniperus procera as food safe additive, their antioxidant, anticancer and antimicrobial activity against some food-borne bacteria. Journal of Biological and Chemical Research, 31(2), 668–677.Google Scholar
  17. 17.
    Abdel Ghany, T. M. (2014). Eco-friendly and safe role of Juniperus procera in controlling of fungal growth and secondary metabolites. Journal of Plant Pathology & Microbiology, 5, 231.  https://doi.org/10.4172/2157-7471.1000231.CrossRefGoogle Scholar
  18. 18.
    Joshi, S., Parikshit, K., Prabha, P., & Sati, S. C. (2018). A comparative evaluation of Kumaun Himalayan gymnosperms for their antifungal potential against plant pathogenic fungi. The Journal of Phytopharmacology, 7(3), 230–241.Google Scholar
  19. 19.
    Sarić-Kundalić, B., Dobeš, C., Klatte-Asselmeyer, V., & Saukel, J. (2011). Ethnobotanical survey of traditionally used plants in human therapy of east, north and northeast Bosnia and Herzegovina. Journal of Ethnopharmacology, 133, 1051–1076.CrossRefGoogle Scholar
  20. 20.
    Nyssen, J., Poessen, J., Moeyersons, J., Deckers, J., Haile, M., & Lang, A. (2004). Human impact on the environment in the Ethiopian and Eritrean highlands - a state of the art. Earth-Science Reviews, 64(3–4), 273–320.  https://doi.org/10.1016/S0012-8252(03)00078-3.CrossRefGoogle Scholar
  21. 21.
    Al-Attar, A. M., Alrobai, A. A., & Almalki, D. A. (2016). Effect of Olea oleaster and Juniperus procera leaves extracts on thioacetamide induced hepatic cirrhosis in male albino mice. Saudi Journal of Biological Sciences, 23, 363–371.  https://doi.org/10.1016/j.sjbs.2015.08.011.CrossRefGoogle Scholar
  22. 22.
    Muhammad, I., Mossa, J. S., & El-Feraly, F. S. (1996). Additional antibacterial diterpenes from the bark of Juniperus procera. Phytotherapy Research, 10, 604–607.CrossRefGoogle Scholar
  23. 23.
    Pankaj, K., Bhatt, R. P., Sati, O. P., Vinod, K. D., & Lokendra, S. (2010). In-vitro antifungal activity of different fraction of Juniperus communis leaves and bark against Aspergillus niger and Aflatoxigenic Aspergillus flavus. International Journal of Pharma and Bio Sciences, 1, 1–7.Google Scholar
  24. 24.
    Yarelis Ortiz-Nunez, Y., Spengler Salabarria, I., Collado, I. G., & Hernandez-Galan, R. (2010). Antifungal activity of extracts and terpene constituents of aerial parts of Juniperus lucayana. ev. Latinoamer. Revista Latinoamericana de Quimica, 38, 145–152.Google Scholar
  25. 25.
    Pirzada, A. J., Shaikh, W., Kazi, T. G., Pervaiz, I., Usmanghani, K., & Hayee-Memon, A. (2005). Isolation of essential elements and inhibition production of medicinal plant Datura alba seeds against human pathogenic fungi. Hamdard Medical, 48, 80–86.Google Scholar
  26. 26.
    El Jemli, M., Naima, K., Khadija, L., Driss, T., Yousra, E., Ilias, M., El Mahdi, W., Yahia, C., & Katim, A. (2018). Antifungal and insecticidal properties of Juniperus thurifera leaves. Natural Product Communications, 13(8), 1047–1049.CrossRefGoogle Scholar
  27. 27.
    Cavaleiro, C., Pinto, E., Gonçalves, M. J., & Salgueiro, L. (2006). Antifungal activity of Juniperus essential oils against dermatophyte, Aspergillus and Candida strains. Journal of Applied Microbiology, 100, 1333–1338.CrossRefGoogle Scholar
  28. 28.
    Cosentino, S., Barra, A., Pisano, B., Cabisa, M., Pirisi, F., & Palmas, M. (2003). Composition and antimicrobial proprieties of Sardinian Juniperus essential oils against foodborne pathogens and spoilage microorganisms. Journal of Food Protection, 66, 1288–1291.CrossRefGoogle Scholar
  29. 29.
    Samoylenko, V., Dunbar, D. C., Gafur, M. D. A., Khan, S. I., Ross, S. A., Mossa, J. S., El-Feraly, F. S., Tekwani, B. L., Bosselaers, J., & Muhammad, I. (2008). Antiparasitic, nematicidal and antifouling constituents from Juniperus berries. Phytotherapy Research, 22, 1570–1576.CrossRefGoogle Scholar
  30. 30.
    Muhammad, I., Mossa, J. S., Al-Yahya, M. A., Ramadan, A. F., & El-Feraly, F. S. (1995). Further antibacterial diterpenes from the bark and leaves of Juniperus procera Hochst. ex Endl. Phytotherapy Research, 9, 584–588.CrossRefGoogle Scholar
  31. 31.
    Mossa, J. S., El-Feraly, F. S., & Muhammad, I. (2004). Antimycobacterial constituents from Juniperus procera, Ferula communis and Plumbago zeylanica and their in vitro synergistic activity with isonicotinic acid hydrazide. Phytotherapy Research, 18, 934–937.  https://doi.org/10.1002/ptr.1420.CrossRefGoogle Scholar
  32. 32.
    Halkai, K. R., Mudda, J. A., Shivanna, V., Rathod, V., & Halkai, R. (2018). Evaluation of antibacterial efficacy of fungal-derived silver nanoparticles against Enterococcus faecalis. Contemporary Clinical Dentistry, 9(1), 45–48.  https://doi.org/10.4103/ccd.ccd_703_17.CrossRefGoogle Scholar
  33. 33.
    Javaid, A., Oloketuyi, S. F., Mohammad Mansoob Khan, M. M., & Khan, F. (2018). Diversity of bacterial synthesis of silver nanoparticles. BioNanoScience, 8(1), 43–59.  https://doi.org/10.1007/s12668-017-0496-x.CrossRefGoogle Scholar
  34. 34.
    Ganash, M., Abdel Ghany, T. M., & Omar, A. M. (2018). Morphological and biomolecules dynamics of phytopathogenic fungi under stress of silver nanoparticles. BioNanoScience, 8(2), 566–573.  https://doi.org/10.1007/s12668-018-0510-y.CrossRefGoogle Scholar
  35. 35.
    Rauwel, P., Küünal, S., Ferdov, S., & Rauwel, E. (2015). A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv Mater Sci Eng, 2015, Article ID 682749, 9 pages.  https://doi.org/10.1155/2015/682749.Google Scholar
  36. 36.
    Abdel Ghany, T. M., Aisha, M. A.-R., Al Abboud, M. A., Alawlaqi, M. M., Magdah, G., Helmy, E. M., & Mabrouk, A. S. (2018). Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. A review. BioNanoScience, 8(1), 5–16.  https://doi.org/10.1007/s12668-017-0413-3.CrossRefGoogle Scholar
  37. 37.
    Alqasoumi SI (2007) Isolation and chemical structure elucidation of hepatoprotective constituents from plants used in traditional medicine in Saudi Arabia. Riyadh: College of Pharmacy, King Saud University. Ph.DGoogle Scholar
  38. 38.
    Migahid, A. M. (1974). Flora of Saudi Arabia. Vol. 1, Cryptogams and dicotyledons equisetaceae to neuradaceae (4th ed.). Riyadh: King Saud University Press.Google Scholar
  39. 39.
    Chaudhary, S. A. (1997). Flora of the Kingdom of Saudi Arabia, Vol. 1, National Agriculture and Water Research Centre (p. 691). Saudi Arabia: Ministry of Agriculture.Google Scholar
  40. 40.
    Raper, K. B., & Fennell, D. I. (1973). The genus Aspergillus. New York: Robert E Krieger Publishing Company.Google Scholar
  41. 41.
    Booth, C. (1977). Fusarium laboratory guide to the identification of the major species. Commonwealth Mycological Institute.Google Scholar
  42. 42.
    Samson, R. A., Hoekstra, E. S., & Van Oorschot, C. A. (1981). Introduction to food-borne fungi. Centraalbureau voor Schimmelcultures.Google Scholar
  43. 43.
    Barnett, H. L., & Hunter, B. B. (1998). Illustrated genera of imperfect fungi. Minnesota: APS press.Google Scholar
  44. 44.
    Leslie, J. F., Summerell, B. A., & Bullock, S. (2006). The Fusarium laboratory manual. Wiley Online Library.Google Scholar
  45. 45.
    Singh, P., Shukla, R., Prakash, B., Kumar, A., Singh, S., Mishra, P. K., & Dubey, N. K. (2010). Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, dl-limonene. Food and Chemical Toxicology, 48, 1734–1740.CrossRefGoogle Scholar
  46. 46.
    Kumar, R., Mishra, A. K., Dubey, N. K., & Tripathi, Y. B. (2007). Evaluation of Chenopodium ambrosioides oil as a potential source of antifungal, antiaflatoxigenic and antioxidant activity. International Journal of Food Microbiology, 115, 159–164.CrossRefGoogle Scholar
  47. 47.
    Binder, E. M., Tan, L. M., Chin, L. J., Handl, J., & Richard, J. (2007). Worldwide occurrence of mycotoxins in commodities, feeds and feed ingredients. Animal Feed Science and Technology, 137(3–4), 265–282.CrossRefGoogle Scholar
  48. 48.
    Mohamed, A. M., Monira, R. A., & Abd El-aziz, A. (2013). Mycotoxigenic fungi contaminating corn and sorghum grains in Saudi Arabia. Pakistan Journal of Botany, 45(5), 1831–1839.Google Scholar
  49. 49.
    Jedidi, I., Soldevilla, C., Lahouar, A., Marín, P., González-Jaén, M. T., & Said, S. (2018). Mycoflora isolation and molecular characterization of Aspergillus and Fusarium species in Tunisian cereals. Saudi Journal of Biological Sciences, 25(5), 868–874.  https://doi.org/10.1016/j.sjbs.2017.11.050.CrossRefGoogle Scholar
  50. 50.
    Ali, A. A., & Elgimabi, M. N. (2015). Extraction and determination of antioxidants, polyphenols, flavonoids and antioxidant activity in some plants. International Journal of Chemical Sciences, 13(4), 1883–1892.Google Scholar
  51. 51.
    Kim, J. S., Kwon, C. S., & Son, K. H. (2000). Inhibition of alpha-glucosidase and amylase by luteolin, a flavonoid. Bioscience, Biotechnology, and Biochemistry, 64, 2458–2461.CrossRefGoogle Scholar
  52. 52.
    Keskes, H., Belhadj, S., Jlail, L., El Feki, A., Damak, M., Sayadi, S., & Allouche, N. (2017). LC-MS–MS and GC-MS analyses of biologically active extracts and fractions from Tunisian Juniperus phoenice leaves. Pharmaceutical Biology, 55(1), 88–95.  https://doi.org/10.1080/13880209.2016.1230139.CrossRefGoogle Scholar
  53. 53.
    Manel, J. B., Fatma, G., Abdel Halim, H., Saleh, A., Amor, H., Sana, N., Ahmed, L., Badr, A., & Mossadok, B. (2015). Investigation of antiulcer and antioxidant activity of Juniperus phoenicea L. (1753) essential oil in an experimental rat model. Biological and Pharmaceutical Bulletin, 38(11), 1738–1746.  https://doi.org/10.1248/bpb.b15-00412.CrossRefGoogle Scholar
  54. 54.
    Alqasoumi, S. I., & Abdel-Kader, S. A. (2012). Terpenoids from Juniperus procera with hepatoprotective activity. Pakistan Journal of Pharmaceutical Sciences, 25(2), 315–322.Google Scholar
  55. 55.
    Mujwah, A. A., Mohammed, A. M., & Mohammed, H. A. (2010). First isolation of a flavonoid from Juniperus procera using ethyl acetate extract. Arabian Journal of Chemistry, 3(2), 85–88.CrossRefGoogle Scholar
  56. 56.
    Emami, S. A., Abedindo, B. F., & Hassanzadeh-Khayyat, M. (2010). Antioxidant activity of the essential oils of different parts of Juniperus excelsa M. Bieb. subsp. excelsa and J. excelsa M. Bieb. subsp. polycarpos (K. Koch) Takhtajan (Cupressaceae). Iranian Journal of Pharmaceutical Research, 10(4), 799–810.Google Scholar
  57. 57.
    Carmen, M. P., Nicoleta, G. H., Daniel, I. H., Valentin, L. O., Alexandra, T. G., Alina, G. B., Aurel, A., & Alfa, X. L. (2011). Caryophyllene from Juniperus communis and Juniperus virginiana Romanian extracts. J Agroaliment Process Technol, 17(1), 54–57.Google Scholar
  58. 58.
    Barrero, A., Quilez, M. J., Lara, A., & Herrador, M. (2005). Antimicrobial activity of sesquiterpenes from the essential oil of Juniperus thurifera wood. Planta Medica, 71(1), 67–71.CrossRefGoogle Scholar
  59. 59.
    Jegadeeswari, P., Nishanthini, A., Muthukumarasamya, S., & Mohan, V. R. (2012). GC-MS analysis of bioactive components of Aristolochia krysagathra (aristolochiaceae). Journal of Current Chemical and Pharmaceutical Sciences, 2(4), 226–232.Google Scholar
  60. 60.
    Al-Rubaye, A. F., Kaizal, A. F., & Hameed, I. H. (2017). Phytochemical screening of methanolic leaves extract of Malva sylvestris. International Journal of Pharmacognosy and Phytochemical Research, 9(4), 537–552.  https://doi.org/10.25258/phyto.v9i2.8127.CrossRefGoogle Scholar
  61. 61.
    Kilic, T. (2006). Isolation and biological activity of new and known diterpenoids from Sideritis stricta Boiss. & Heldr. Molecules, 11(4), 257–262.  https://doi.org/10.3390/11040257.MathSciNetCrossRefGoogle Scholar
  62. 62.
    Zheljazkov, V. D., Semerdjieva, I. B., Dincheva, I., Kacaniova, M., Astatkie, T., Radoukova, T., & Schlegel, V. (2017). Antimicrobial and antioxidant activity of Juniper galbuli essential oil constituents eluted at different times. Industrial Crops and Products, 109, 529–537.CrossRefGoogle Scholar
  63. 63.
    Nikolić, B., Vasilijević, B., Ćirić, A., Mitić-Ćulafić, D., Cvetković, S., Džamić, A., & Knežević-Vukčević, J. (2019). Bioactivity of Juniperus communis essential oil and post-distillation waste: Assessment of selective toxicity against food contaminants. Archives of Biological Sciences, 71(2), 235–244.  https://doi.org/10.2298/ABS181217005N.CrossRefGoogle Scholar
  64. 64.
    Clark, M. A., McChesney, J. D., & Adams, R. P. (1990). Antimicrobial properties of heartwood, bark/sapwood and leaves of Juniperus species. Phytotherepy Research, 4(1), 15–19.CrossRefGoogle Scholar
  65. 65.
    Nunez, Y. O., Salabarria, I. S., Collado, I. G., & Hernandez-Galan, R. (2007). Sesquiterpenes from the wood of Juniperus lucayana. Phytochemistry, 68, 2409–2414.CrossRefGoogle Scholar
  66. 66.
    Khalil, N. M., Abd El-Ghany, M. N., & Rodríguez-Couto, S. (2019). Antifungal and anti-mycotoxin efficacy of biogenic silver nanoparticles produced by Fusarium chlamydosporum and Penicillium chrysogenum at non-cytotoxic doses. Chemosphere, 218, 477–486.CrossRefGoogle Scholar
  67. 67.
    Safaa, M. A., Naeima, M. H., & Nivien, A. N. (2015). Application of biosynthesized silver nanoparticles for the control of land snail Eobania vermiculata and some plant pathogenic fungi. Journal of Nanomaterials, 2015, Article ID 218904, 10 p.  https://doi.org/10.1155/2015/218904.Google Scholar
  68. 68.
    Majeed, A., Ullah, W., Anwar, A. W., Shuaib, A., Ilyas, U., Khalid, P., Mustafa, G., Junaid, M., Faheem, B., & Ali, S. (2016). Cost-effective biosynthesis of silver nanoparticles using different organs of plants and their antimicrobial applications: a review. Materials and Technologies, 1-8.Google Scholar
  69. 69.
    Mohanta, Y. K., Panda, S. K., Jayabalan, R., Sharma, N., Bastia, A. K., & Mohanta, T. K. (2017). Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.). Frontiers in Molecular Biosciences, 4, 14.CrossRefGoogle Scholar
  70. 70.
    Prakash, B., Singh, P., Mishra, P. K., & Dubey, N. K. (2011). Safety assessment of Zanthoxylum alatum Roxb. essential oil, its antifungal, antiaflatoxin, antioxidant activity and efficacy as antimicrobial in preservation of Piper nigrum L. fruits. International Journal of Food Microbiology, 153, 183–191.CrossRefGoogle Scholar
  71. 71.
    Abdel Ghany, T. M., Ganash, M. A., Marwah, M. B., Aisha, M. H. A.-R., Mohamed, A., & Abboud, A. (2016). Evaluation of natural sources for repress cytotoxic Trichothecenes and Zearalenone production with using enzyme-linked immunosorbent assay. Life Science Journal, 13(8), 74–86.  https://doi.org/10.7537/marslsj130816.13.CrossRefGoogle Scholar
  72. 72.
    Panda, P., Aiko, V., & Mehta, A. (2014). Effect of aqueous extracts of Mentha arvensis (mint) and Piper betle (betel) on growth and citrinin production from toxigenic Penicillium citrinum. Journal of Food Science and Technology, 52(6), 3466–3474.  https://doi.org/10.1007/s13197-014-1390-y.CrossRefGoogle Scholar
  73. 73.
    Abd Aliael-SA, & Badawey, A. (1991). Inhibitory effect of hena (Lawsonia inermis leaves) and carrot root on aflatoxin production by Aspergillus parasiticus. Mycotoxin Research, 7(2), 61–68.  https://doi.org/10.1007/BF03192167.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Marwah M. Bakri
    • 1
  • Medhat A. El-Naggar
    • 2
    • 3
  • E. A. Helmy
    • 4
  • Mona S. Ashoor
    • 5
  • T. M. Abdel Ghany
    • 6
    Email author
  1. 1.University College, Al-ArdahJazan UniversityJazanSaudi Arabia
  2. 2.Agricultural Research CenterPlant Pathology Research InstituteGizaEgypt
  3. 3.National Research Central Lab.GSFMORiyadhSaudi Arabia
  4. 4.The Regional Center for Mycology and BiotechnologyAl-Azhar UniversityCairoEgypt
  5. 5.Adarb University CollegeJazan UniversityJazanSaudi Arabia
  6. 6.Botany and Microbiology Department, Faculty of ScienceAl-Azhar UniversityCairoEgypt

Personalised recommendations