Assessment of Antibacterial Activity and the Effect of Copper and Iron Zerovalent Nanoparticles on Gene Expression DnaK in Pseudomonas aeruginosa

  • Raziyeh Ghorbani
  • Pourya Biparva
  • Fatemeh MoradianEmail author


The use of antibiotics in addition to drug resistance can cause harmful side effects. The presence of nanoparticles as novel antibacterial agents and carriers for drug delivery are important for the treatment of diseases. Pseudomonas aeruginosa is an opportunistic pathogen and resistance to antibiotics that infects damaged tissues and also people with a weak immune system. In this study, zerovalent copper (Cu0) and iron (Fe0) nanoparticles with the average size of 25 nm and less than 50 nm, respectively, were synthesized by chemical reduction method. Scanning electron microscopy (SEM) has been used to determine the particle size and morphology. The antibacterial effect of these nanoparticles against Pseudomonas aeruginosa was assessed. The minimum inhibitory concentrations (MIC), as well as minimum bactericidal concentration (MBC), were determined using colony count and measurement of optical density methods. The results of treatment Pseudomonas aeruginosa with zerovalent iron and copper nanoparticles showed that the rate of growth was reduced in a dose-dependent manner and these nanoparticles showed that bactericidal effect on Pseudomonas aeruginosa. The effect of zerovalent iron and copper nanoparticles on heat shock gene expression dnaK were studied using real-time RT-PCR. Gene expression levels indicated that dnaK expression was reduced 10- and 7-fold in treatment with Fe0 and Cu0, respectively. Since the nanoparticles inhibited the bacterial growth, the expression level has decreased compared with control.


Antibacterial DnaK gene Minimum inhibitory concentrations (MIC) Minimum bactericidal concentrations (MBC) Nanoparticle Pseudomonas aeruginosa 



This original research was performed in Sari Agricultural Sciences and Natural Resources University, Department of Basic Sciences, and Cell and Molecular lab. We are thankful for providing facilities and assistance.

Funding Statement


Compliance with Ethical Standards

Conflict of Interest


Research Involving Humans and Animals Statement


Informed Consent



  1. 1.
    Baker-Austin, C., et al. (2006). Co-selection of antibiotic and metal resistance. Trends Microbiol, 14, 176–182.CrossRefGoogle Scholar
  2. 2.
    Hajipour, M. J., Fromm, K. M., Ashkarran, A. A., Jimenez de Aberasturi, D., Ruiz de Larramendi, I., Rojo, T., Serpooshan, V., Parak, W. J., & Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends Biotechnol, 30(10), 499–511.CrossRefGoogle Scholar
  3. 3.
    Baltch A, Smith RP (1994) Pseudomonas aeruginosa: Infections and treatment., Marcel Dekker, New York, NYGoogle Scholar
  4. 4.
    Cornelis P (2008) Pseudomonas: genomics and molecular biology. Horizon Scientific PressGoogle Scholar
  5. 5.
    Levy, S. B. (1991). Antibiotic availability and use: consequences to man and his envronment. J Clin Epidemiol, 45, 83–87.CrossRefGoogle Scholar
  6. 6.
    Tong, G., Yulong, M., Peng, G., & Zirong, X. (2005). Antibacterial effects of the cu (II)-exchanged montmorillonite on Escherichia coli K88 and Salmonella choleraesuis. Vet Microbiol, 105(2), 113–122.CrossRefGoogle Scholar
  7. 7.
    Hu, C. H., & Xia, M. S. (2006). Adsorption and antibacterial effect of copper-exchanged montmorillonite on Escherichia coli K 88. Appl Clay Sci, 31(3), 180–184.CrossRefGoogle Scholar
  8. 8.
    Mamunya, Y. P., Zois, H., Apekis, L., & Lebedev, E. V. (2004). Influence of pressure on the electrical conductivity of metal powders used as fillers in polymer composites. Powder Technol, 140(1), 49–55.CrossRefGoogle Scholar
  9. 9.
    Michels HT, Wilks SA, Noyce JO, Keevil CW (2005) Copper alloys for human infectious disease control. Presented at Materials Science and Technology Conference, September 25–28, Pittsburgh, PA Copper for the 21st Century SymposiumGoogle Scholar
  10. 10.
    Gorby, Y. A., Yanina, S., McLean, J. S., Rosso, K. M., Moyles, D., Dohnalkova, A., & Culley, D. E. (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci, 103(30), 11358–11363.CrossRefGoogle Scholar
  11. 11.
    Kirchner, C., Liedl, T., Kudera, S., Pellegrino, T., Muñoz Javier, A., Gaub, H. E., & Parak, W. J. (2005). Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett, 5(2), 331–338.CrossRefGoogle Scholar
  12. 12.
    Young, J. C., Barral, J. M., & Hartl, F. U. (2003). More than folding: localized functions of cytosolic chaperones. Trends Biochem Sci, 28(10), 541–547.CrossRefGoogle Scholar
  13. 13.
    Ritossa, F. (1962). A new puffing pattern induced by temperature shock and DNP in drosophila. Cell Mol Life Sci, 18(12), 571–573.CrossRefGoogle Scholar
  14. 14.
    Ritossa F(1996) Discovery of the heat shock response. Cell stress & chaperones 1(297Google Scholar
  15. 15.
    Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402–408.CrossRefGoogle Scholar
  16. 16.
    Sayılkan, F., Asiltürk, M., Kiraz, N., Burunkaya, E., Arpaç, E., & Sayılkan, H. (2009). Photocatalytic antibacterial performance of Sn 4+−doped TiO 2 thin films on glass substrate. J Hazard Mater, 162(2), 1309–1316.CrossRefGoogle Scholar
  17. 17.
    May, T. B., Shinabarger, D., Maharaj, R. O. M. I. L. A., Kato, J., Chu, L., DeVault, J. D., & Rothmel, R. K. (1991). Alginate synthesis by Pseudomonas aeruginosa: A key pathogenic factor in chronic pulmonary infections of cystic fibrosis patients. Clin Microbiol Rev, 4(2), 191–206.CrossRefGoogle Scholar
  18. 18.
    Ghorbani, R., Moradian, F., & Biparva, P. (2018). Assessment of different antibacterial effects of Fe and cu nanoparticles on Xanthomonas campestris growth and expression of its pathogenic gene hrpE. J Agric Sci Technol, 20, 1059–1070.Google Scholar
  19. 19.
    Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346.CrossRefGoogle Scholar
  20. 20.
    Ruparelia, J. P., Chatterjee, A. K., Duttagupta, S. P., & Mukherji, S. (2008). Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater, 4(3), 707–716.CrossRefGoogle Scholar
  21. 21.
    Usman, M. S., El Zowalaty, M. E., Shameli, K., Zainuddin, N., Salama, M., & Ibrahim, N. A. (2013). Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomedicine, 8, 4467.Google Scholar
  22. 22.
    Farag, S. S. S., & Hebeish, A. (2015). Multifunctionalized cotton fabric using cu nanoparticles. Int J Adv Res, 3(6), 125–136.Google Scholar
  23. 23.
    Lee, H. J., Yeo, S. Y., & Jeong, S. H. (2003). Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J Mater Sci, 38(10), 2199–2204.CrossRefGoogle Scholar
  24. 24.
    Cioffi, N., Torsi, L., Ditaranto, N., Tantillo, G., Ghibelli, L., Sabbatini, L., & Traversa, E. (2005). Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater, 17(21), 5255–5262.CrossRefGoogle Scholar
  25. 25.
    Raffi, M., Hussain, F., Bhatti, T. M., Akhter, J. I., Hameed, A., & Hasan, M. M. (2008). Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Technol, 24(2), 192–196.Google Scholar
  26. 26.
    Barnard, A. S. (2006). Nanohazards: knowledge is our first defence. Nat Mater, 5(4), 245–248.CrossRefGoogle Scholar
  27. 27.
    Barzan, E., Mehrabian, S., & Irian, S. (2014). Antimicrobial and genotoxicity effects of zero-valent iron nanoparticles. Jundishapur J Microbiol, 7(5), 1–5.CrossRefGoogle Scholar
  28. 28.
    Mahapatra, O., Bhagat, M., Gopalakrishnan, C., & Arunachalam, K. D. (2008). Ultrafine dispersed CuO nanoparticles and their antibacterial activity. J Exp Nanosci, 3(3), 185–193.Google Scholar
  29. 29.
    Selvarani, M., & Prema, P. (2013). Evaluation of antibacterial efficacy of chemically synthesized copper and zerovalent iron nanoparticles. Asian J Pharm Clin Res, 6(3), 223–227.Google Scholar
  30. 30.
    Raffi, M., Mehrwan, S., Bhatti, T. M., Akhter, J. I., Hameed, A., Yawar, W., & ul Hasan, M. M. (2010). Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann Microbiol, 60(1), 75–80.CrossRefGoogle Scholar
  31. 31.
    Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv, 27(1), 76–83.CrossRefGoogle Scholar
  32. 32.
    Yagi, S., Nakanishi, H., Matsubara, E., Matsubara, S., Ichitsubo, T., Hosoya, K., & Matsuba, Y. (2008). Formation of cu nanoparticles by electroless deposition using aqueous CuO suspension. J Electrochem Soc, 155(6), 474–479.CrossRefGoogle Scholar
  33. 33.
    Segal, G., & Ron, E. Z. (1998). Regulation of heat-shock response in bacteria. Ann N Y Acad Sci, 851(1), 147–151.CrossRefGoogle Scholar
  34. 34.
    Tavaria, M., Gabriele, T., Kola, I., & Anderson, R. L. (1996). A hitchhiker’s guide to the human Hsp70 family. Cell Stress Chaperones, 1(1), 23.CrossRefGoogle Scholar
  35. 35.
    Morano, K. A. (2007). New tricks for an old dog. Ann N Y Acad Sci, 1113(1), 1–14.CrossRefGoogle Scholar
  36. 36.
    Mashaghi, A., Bezrukavnikov, S., Minde, D. P., Wentink, A. S., Kityk, R., Zachmann-Brand, B., & Tans, S. J. (2016). Alternative modes of client binding enable functional plasticity of Hsp70. Nature, 539(7629), 448–451.CrossRefGoogle Scholar
  37. 37.
    Xiao, Y., Lu, Y., Heu, S., & Hutcheson, S. W. (1992). Organization and environmental regulation of the Pseudomonas syringae pv. syringae 61 hrp cluster. J Bacteriol, 174(6), 1734–1741.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Basic SciencesSari Agricultural Sciences and Natural Resources UniversitySariIran

Personalised recommendations