Silver Nanoparticles Deposited Algal Nanofibrous Cellulose Sheet for Antibacterial Activity

  • Priyank L. BhutiyaEmail author
  • Nirendra Misra
  • M. Abdul Rasheed
  • S. Zaheer Hasan


Nanofibrillated, intertwined, and bird’s nest type cellulose (Iα) was extracted from green filamentous seaweed Chaetomorpha crassa by using simple bleaching agent. Silver nanoparticles were grown over seaweed cellulose sheet by using single-step hydrothermal method. The nanofibrillated cellulose and silver nanoparticles deposited cellulose sheets were characterized by FTIR, SEM-EDX, TGA, XRD, UV-Visible spectroscopy, and tensile strength. XRD peaks showed that seaweed cellulose was highly crystalline (crystallinity index: 83.21%) and acted as reducing agent, reducing Ag2O/Ag2CO3 to metal silver. The average diameter of seaweed nanofibrous cellulose and silver nanoparticles were 25 nm and 56 nm, respectively. The broad spectra in UV-Vis analysis indicated that silver nanoparticles had agglomerated. Silver deposited sheet was thermally stable as compared to cellulose sheet. Nanosilver-coated cellulose sheet has been found with good antimicrobial property against the gram-positive (Staphylococcus aureus: 54.5%) and the gram-negative (Escherichia coli: 43.8%) microbes. The laboratory findings reveal that with the use of marine raw material along with straightforward manufacturing process, the antibacterial sheet can effectively develop for applications in pharmaceutical, biomedical, food packaging, textile, water treatment, and biotechnological industries.


Seaweed Nanofibrillated cellulose (IαAg2O/Ag2CO3 Silver nanoparticles Straightforward manufacturing Antibacterial sheet Biomedical 



The authors are thankful to Mr. B.k. Solanki of Sigma Public School, Porbandar, and the local fishermen of Bhavpara, Gujarat, India, for their constant support in the tedious task of collection of seaweed samples under the sea close to Bhavpara region. The authors are also thankful to Mr. Brajmohan for his constant support.


  1. 1.
    Liu, D., Keesing, J. K., Xing, Q., & Shi, P. (2009). World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Marine Pollution Bulletin, 58(6), 888–895.CrossRefGoogle Scholar
  2. 2.
    FAO. (2014). The state of world fisheries and aquaculture: opportunities and challenges. Rome, 209
  3. 3.
    Jones, C. S., & Mayfield, S. P. (2012). Algae biofuels: versatility for the future of bioenergy. Current Opinion in Biotechnology, 23(3), 346–351.CrossRefGoogle Scholar
  4. 4.
    Fangel, J. U., Ulvskov, P., Knox, J. P., Mikkelsen, M. D., Harholt, J., Popper, Z. A., & Willats, W. G. T. (2012). Cell wall evolution and diversity. Frontiers in Plant Science, 3, 152.CrossRefGoogle Scholar
  5. 5.
    Makkar, H. P., Tran, G., Heuzé, V., Giger-Reverdin, S., Lessire, M., Lebas, F., & Ankers, P. (2016). Seaweeds for livestock diets: a review. Animal Feed Science and Technology, 212, 1–17.CrossRefGoogle Scholar
  6. 6.
    Jha, B., Reddy, C. R. K., Thakur, M. C., & Rao, M. U. (2009). Seaweeds of India: the diversity and distribution of seaweeds of Gujarat coast (Vol. 3). Berlin: Springer Science & Business Media.CrossRefGoogle Scholar
  7. 7.
    Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941–3994.CrossRefGoogle Scholar
  8. 8.
    Xiang, Z., Gao, W., Chen, L., Lan, W., Zhu, J. Y., & Runge, T. (2016). A comparison of cellulose nanofibrils produced from Cladophora glomerata algae and bleached eucalyptus pulp. Cellulose, 23(1), 493–503.CrossRefGoogle Scholar
  9. 9.
    Nicolai, E., & Preston, R. D. (1952). Cell-wall studies in the Chlorophyceae. I. A general survey of submicroscopic structure in filamentous species. Proceedings of the Royal Society of London. Series B: Biological Sciences, 140(899), 244–274.CrossRefGoogle Scholar
  10. 10.
    Johnson, M., Shivkumar, S., & Berlowitz-Tarrant, L. (1996). Structure and properties of filamentous green algae. Materials Science and Engineering B, 38(1-2), 103–108.CrossRefGoogle Scholar
  11. 11.
    Mihranyan, A. (2011). Cellulose from cladophorales green algae: from environmental problem to high-tech composite materials. Journal of Applied Polymer Science, 119(4), 2449–2460.CrossRefGoogle Scholar
  12. 12.
    Gustafsson, S., Lordat, P., Hanrieder, T., Asper, M., Schaefer, O., & Mihranyan, A. (2016). Mille-feuille paper: a novel type of filter architecture for advanced virus separation applications. Materials Horizons, 3(4), 320–327.CrossRefGoogle Scholar
  13. 13.
    Tian, H., & He, J. (2016). Cellulose as a scaffold for self-assembly: from basic research to real applications. Langmuir, 32(47), 12269–12282.CrossRefGoogle Scholar
  14. 14.
    Bhutiya, P. L., Mahajan, M. S., Rasheed, M. A., Pandey, M., Hasan, S. Z., & Misra, N. (2018). Zinc oxide nanorod clusters deposited seaweed cellulose sheet for antimicrobial activity. International Journal of Biological Macromolecules, 112, 1264–1271.CrossRefGoogle Scholar
  15. 15.
    He, J., Kunitake, T., & Nakao, A. (2003). Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chemistry of Materials, 15(23), 4401–4406.CrossRefGoogle Scholar
  16. 16.
    Tran, Q. H., & Le, A. T. (2013). Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Advances in Natural Sciences: Nanoscience and Nanotechnology, 4(3), 033001.Google Scholar
  17. 17.
    Chen, X., & Schluesener, H. J. (2008). Nanosilver: a nanoproduct in medical application. Toxicology Letters, 176(1), 1–12.CrossRefGoogle Scholar
  18. 18.
    Nowack, B., Krug, H. F., & Height, M. (2011). 120 years of nanosilver history: implications for policy makers. Environmental Science & Technology, 45, 117–1183.Google Scholar
  19. 19.
    Sharma, V. K., Yngard, R. A., & Lin, Y. (2009). Silver nanoparticles: green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 145(1-2), 83–96.CrossRefGoogle Scholar
  20. 20.
    Lu, Y., Liu, H., Gao, R., Xiao, S., Zhang, M., Yin, Y., Wang, S., Li, J., & Yang, D. (2016). Coherent-interface-assembled Ag2O-anchored nanofibrillated cellulose porous aerogels for radioactive iodine capture. ACS Applied Materials & Interfaces, 8(42), 29179–29185.CrossRefGoogle Scholar
  21. 21.
    Khodashenas, B., & Ghorbani, H. R. (2015). Synthesis of silver nanoparticles with different shapes. Arabian Journal of Chemistry.Google Scholar
  22. 22.
    Li, R., He, M., Li, T., & Zhang, L. (2015). Preparation and properties of cellulose/silver nanocomposite fibers. Carbohydrate Polymers, 115, 269–275.CrossRefGoogle Scholar
  23. 23.
    Dong, Y. Y., Fu, L. H., Liu, S., Ma, M. G., & Wang, B. (2015). Silver-reinforced cellulose hybrids with enhanced antibacterial activity: synthesis, characterization, and mechanism. RSC Advances, 5(118), 97359–97366.CrossRefGoogle Scholar
  24. 24.
    Yang, G., Xie, J., Deng, Y., Bian, Y., & Hong, F. (2012). Hydrothermal synthesis of bacterial cellulose/AgNPs composite: a “green” route for antibacterial application. Carbohydrate Polymers, 87(4), 2482–2487.CrossRefGoogle Scholar
  25. 25.
    Xu, Y. J., Zuo, L. G., Qian, X., & Wang, J. Y. (2016). Preparation and characterization of cellulose-silver nanocomposites by in situ reduction with alkalis as activation reagent. BioResources, 11(1), 2797–2808.Google Scholar
  26. 26.
    Ojha, A. K., Forster, S., Kumar, S., Vats, S., Negi, S., & Fischer, I. (2013). Synthesis of well–dispersed silver nanorods of different aspect ratios and their antimicrobial properties against gram positive and negative bacterial strains. Journal of Nanobiotechnology, 11(1), 42.CrossRefGoogle Scholar
  27. 27.
    Agnihotri, S., Mukherji, S., & Mukherji, S. (2014). Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Advances, 4(8), 3974–3983.CrossRefGoogle Scholar
  28. 28.
    Mihranyan, A., Llagostera, A. P., Karmhag, R., Strømme, M., & Ek, R. (2004). Moisture sorption by cellulose powders of varying crystallinity. International Journal of Pharmaceutics, 269(2), 433–442.CrossRefGoogle Scholar
  29. 29.
    Gustafsson, S., & Mihranyan, A. (2016). Strategies for tailoring the pore-size distribution of virus retention filter papers. ACS Applied Materials & Interfaces, 8(22), 13759–13767.CrossRefGoogle Scholar
  30. 30.
    Zhao, X., Su, Y., Qi, X., & Han, X. (2017). A facile method to prepare novel Ag2O/Ag2CO3 three-dimensional hollow hierarchical structures and their water purification function. ACS Sustainable Chemistry & Engineering, 5(7), 6148–6158.CrossRefGoogle Scholar
  31. 31.
    YAĞCI, M. A., & TURNA, İ. İ. (2002). A new record for the algal flora of Turkey: Chaetomorpha crassa (C. ag.) kütz. (Cladophoraceae, Chlorophyceae). Turkish Journal of Botany, 26(3), 171–174.Google Scholar
  32. 32.
    Morán, J. I., Alvarez, V. A., Cyras, V. P., & Vázquez, A. (2008). Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose, 15(1), 149–159.CrossRefGoogle Scholar
  33. 33.
    Nelson, M. L., & O'Connor, R. T. (1964). Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. Journal of Applied Polymer Science, 8(3), 1311–1324.CrossRefGoogle Scholar
  34. 34.
    Waterhouse, G. I., Bowmaker, G. A., & Metson, J. B. (2001). The thermal decomposition of silver (I, III) oxide: a combined XRD, FT-IR and Raman spectroscopic study. Physical Chemistry Chemical Physics, 3(17), 3838–3845.CrossRefGoogle Scholar
  35. 35.
    Wada, M., Sugiyama, J., & Okano, T. (1993). Native celluloses on the basis of two crystalline phase (Iα/Iβ) system. Journal of Applied Polymer Science, 49(8), 1491–1496.CrossRefGoogle Scholar
  36. 36.
    Wada, M., Okano, T., & Sugiyama, J. (1997). Synchrotron-radiated X-ray and neutron diffraction study of native cellulose. Cellulose, 4(3), 221–232.CrossRefGoogle Scholar
  37. 37.
    Tsekos, I. (1999). The sites of cellulose synthesis in algae: diversity and evolution of cellulose-synthesizing enzyme complexes. Journal of Phycology, 35(4), 635–655.CrossRefGoogle Scholar
  38. 38.
    Hu, H., Huang, X., Deng, C., Chen, X., & Qian, Y. (2007). Hydrothermal synthesis of ZnO nanowires and nanobelts on a large scale. Materials Chemistry and Physics, 106(1), 58–62.CrossRefGoogle Scholar
  39. 39.
    Prabhu, S., & Poulose, E. K. (2012). Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International nano letters, 2(1), 32.CrossRefGoogle Scholar
  40. 40.
    Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Priyank L. Bhutiya
    • 1
    • 2
    Email author
  • Nirendra Misra
    • 1
  • M. Abdul Rasheed
    • 2
  • S. Zaheer Hasan
    • 2
  1. 1.Department of Science, School of TechnologyPandit Deendayal Petroleum UniversityGandhinagarIndia
  2. 2.Petroleum Research WingGujarat Energy Research and Management InstituteGandhinagarIndia

Personalised recommendations