Advertisement

CuO Nanoparticle-Protein Bioconjugate: Characterization of CuO Nanoparticles for the Study of the Interaction and Dynamic of Energy Transfer with Bovine Serum Albumin

  • Amit Kumar BhuniaEmail author
  • Satyajit Saha
Article
  • 22 Downloads

Abstract

Here, we aim to disclose the role of two different ranges concentration of copper oxide nanoparticles (CuO NPs) for the adsorption of BSA to CuO NP surfaces and the kinetics of the energy transfer between CuO NPs and BSA molecule by using different spectroscopy, time-resolved fluorescence measurements, and DLS study. The grown ~ 20.31 nm CuO NPs showed 3.60-eV band gap and 1.026-eV Urbach energy. The XRD pattern showed that the unit cell of the synthesized CuO nano-crystal is monoclinic phase. The photoluminescence spectrum of pure CuO NPs showed a high quantum yield of the blue emission. A small red shift of the absorption peak of BSA is determined because of binding with CuO NPs. The calculated value of an apparent association constant (Kapp) in the CuO NPs–BSA bioconjugate was found to be 6.51 × 103 M−1 and 2.16 × 103 M−1 for the small concentration range and large concentration range, respectively. The total change in energy transfer efficiency (ΔEeff) at room temperature is 22% and 5.6% for the use large and small concentration, respectively; at body temperature, this change is 13.6% and 6.6%, respectively. The BSA quenching is a mixed type in lower temperature in the low-concentration range and fully dynamic in the high-concentration range. The nature of interaction is exothermic, electrostatic, and hydrophobic. The fluorescence lifetimes of pure BSA decreased from 4.94 to 1.04 ns upon adsorption onto CuO NPs, corresponding to Eeff of 79.35%. The use of large concentration leads to aggregation rather than individual corona formation under the small concentration of CuO NPs.

Graphical Abstract

Graphical Abstract

Keywords

CuO nanoparticles Absorption Fluorescence quenching Energy transfer Protein-nanoparticle interaction 

Notes

Acknowledgments

The authors are grateful to the Department of Physics and Technophysics of Vidyasagar University and Department of Physics, Gevernment General Degree College at Gopiballavpur-II. The authors are also thankful to CRF, IIT Kharagpur for the TEM measurement facility.

Supplementary material

12668_2019_687_MOESM1_ESM.docx (1.8 mb)
ESM 1 (DOCX 1867 kb)

References

  1. 1.
    Dong, X., Jiang, D., Liu, Q., Han, E., Zhang, X., Guan, X., & Qiu, B. (2014). Enhanced amperometric sensing for direct detection of nitenpyram via synergistic effect of copper nanoparticles and nitrogen-doped graphene. Journal of Electroanalytical Chemistry, 734, 25–30.CrossRefGoogle Scholar
  2. 2.
    Nations, S., Long, M., Wages, M., Maul, J. D., Theodorakis, C. W., & Cobb, G. P. (2015). Subchronic and chronic developmental effects of copper oxide (CuO) nanoparticles on Xenopus laevis. Chemosphere, 135, 166–174.CrossRefGoogle Scholar
  3. 3.
    Grigore, M. E., Biscu, E. R., Holban, A. M., Gestal, M. C., & Grumezescu, A. M. (2016). Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals, 9, 75.  https://doi.org/10.3390/ph9040075.CrossRefGoogle Scholar
  4. 4.
    Perreault, F., Melegari, S. P., Da Costa, C. H., Rossetto, A. L. D. O. F., Popovic, R., & Matias, W. G. (2012). Genotoxic effects of copper oxide nanoparticles in Neuro 2A cell cultures. Science of the Total Environment, 441, 117–124.CrossRefGoogle Scholar
  5. 5.
    Barua, S., Das, G., Aidew, L., Buragohain, A. K., & Karak, N. (2013). Copper–copper oxide coated nanofibrillar cellulose: a promising, biomaterial. RSC Advances, 3, 14997–15004.CrossRefGoogle Scholar
  6. 6.
    Baek, Y.-W., & An, Y.-J. (2011). Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Science of the Total Environment, 409, 1603–1608.CrossRefGoogle Scholar
  7. 7.
    Isani, G., Falcioni, M. L., Barucca, G., Sekar, D., Andreani, G., Carpenè, E., & Falcioni, G. (2013). Comparative toxicity of CuO nanoparticles and CuSO4 in rainbow trout. Ecotoxicology and Environmental Safety, 97, 40–46.CrossRefGoogle Scholar
  8. 8.
    Ostaszewska, T., Chojnacki, M., Kamaszewski, M., & Sawosz-Chwalibóg, E. (2015). Histopathological effects of silver and copper nanoparticles on the epidermis, gills, and liver of Siberian sturgeon. Environmental Science and Pollution Research, 23, 1621–1633.CrossRefGoogle Scholar
  9. 9.
    Ruiz, P., Katsumiti, A., Nieto, J. A., Bori, J., Jimeno-Romero, A., Reip, P., Arostegui, I., Orbea, A., & Cajaraville, M. P. (2015). Short-term effects on antioxidant enzymes and long-term genotoxic and carcinogenic potential of CuO nanoparticles compared to bulk CuO and ionic copper in mussels Mytilus galloprovincialis. Marine Environmental Research, 111, 107–120.CrossRefGoogle Scholar
  10. 10.
    Sankar, R., Maheswari, R., Karthik, S., Shivashangari, K. S., & Ravikumar, V. (2014). Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles. Materials Science and Engineering: C, 44, 234–239.CrossRefGoogle Scholar
  11. 11.
    Esfandfar, P., Falahati, M., & Saboury, A. (2016). Spectroscopic studies of interaction between CuO nanoparticles and bovine serum albumin. Journal of Biomolecular Structure & Dynamics, 34(9), 1962–1968.CrossRefGoogle Scholar
  12. 12.
    Ingle, A. P., Duran, N., & Rai, M. (2014). Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review. Applied Microbiology and Biotechnology, 98, 1001–1009.CrossRefGoogle Scholar
  13. 13.
    Chang, Y.-N., Zhang, M., Lin, X., Zhang, J., & Xing, G. (2012). The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials, 5, 2850–2871.CrossRefGoogle Scholar
  14. 14.
    Lindman, S., Lynch, I., Thulin, E., Nilsson, H., Dawson, K. A., & Linse, S. (2007). Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Letters, 7(4), 914–920.CrossRefGoogle Scholar
  15. 15.
    Lundqvist, M., Stigler, J., Elia, G., Lynch, I., Cedervall, T., & Dawson, K. A. (2008). Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proceedings of the National Academy of Sciences of the United States of America, 105(38), 14265–14270.CrossRefGoogle Scholar
  16. 16.
    Ma, Z., Bai, J., Wang, Y., & Jiang, X. (2014). Impact of shape and pore size of mesoporous silica nanoparticles on serum protein adsorption and RBCs hemolysis. ACS Applied Materials & Interfaces, 6(4), 2431–2438.CrossRefGoogle Scholar
  17. 17.
    Shang, L., & Nienhaus, G. U. (2017). In situ characterization of protein adsorption onto nanoparticles by fluorescence correlation spectroscopy. Accounts of Chemical Research, 50(2), 387–395.CrossRefGoogle Scholar
  18. 18.
    Koshkina, O., Lang, T., Thiermann, R., et al. (2015). Temperature-triggered protein adsorption on polymer-coated nanoparticles in serum. Langmuir, 31(32), 8873–8881.CrossRefGoogle Scholar
  19. 19.
    Foroozandeh, P., & Aziz, A. A. (2015). Merging worlds of nanomaterials and biological environment: factors governing protein corona formation on nanoparticles and its biological consequences. Nanoscale Research Letters, 10, 221.CrossRefGoogle Scholar
  20. 20.
    Mahmoudi, M., Abdelmonem, A. M., Behzadi, S., et al. (2013). Temperature: the ‘ignored’ factor at the NanoBio interface. ACS Nano, 7(8), 6555–6562.CrossRefGoogle Scholar
  21. 21.
    Klein, J. (2007). Probing the interactions of proteins and nanoparticles. PNAS, 104(7), 2029–2030.CrossRefGoogle Scholar
  22. 22.
    Zhang, T.-X., Zhu, G.-Y., Lu, B.-Y., Zhang, C.-L., & Peng, Q. (2017). Concentration-dependent protein adsorption at the nano–bio interfaces of polymeric nanoparticles and serum proteins. Nanomedicine, 12(22), 1–14.CrossRefGoogle Scholar
  23. 23.
    Bhunia, A. K., & Saha, S. (2019). Absorption spectroscopy and structural analysis of ZnO and ZnS nanostructure. Advanced Science, Engineering and Medicine, 11(7), 644–651.CrossRefGoogle Scholar
  24. 24.
    Saha, S., & Bhunia, A. K. (2013). Synthesis of Fe2O3 nanoparticles and study of its structural, optical properties. Journal of Physical Sciences, 17, 191–195.Google Scholar
  25. 25.
    Koffyberg, F. P., & Benko, F. A. (1982). J.Appl.Phys., 53, 1173.CrossRefGoogle Scholar
  26. 26.
    Klinbumrung, A., Thongtem, T., & Thongtem, S. (2014). Characterization and gas sensing properties of CuO synthesized by DC directly applying voltage. Applied Surface Science, 313, 640–646.CrossRefGoogle Scholar
  27. 27.
    Bhattacharjee, B., Ganguli, D., Chaudhuri, S., & Pal, A. K. (2003). Synthesis and optical characterization of sol–gel derived zinc sulphide nanoparticles confined in amorphous silica thin films. Materials Chemistry and Physics, 78(2), 372–379.CrossRefGoogle Scholar
  28. 28.
    Dhineshbabu, N. R., Rajendran, V., Nithyavathy, N., & Vetumperumal, R. (2016). Study of structural and optical properties of cupric oxide nanoparticles. Applied Nanoscience, 6, 933–939.CrossRefGoogle Scholar
  29. 29.
    Gandhi, S., Subramani, R. H. H., Ramakrishnan, T., Sivabalan, A., Dhanalakshmi, V., Nair, M. R. G., & Anbarasan, R. (2010). Ultrasound assisted one pot synthesis of nano-sized CuO and its nanocomposite with poly(vinyl alcohol). Journal of Materials Science, 45, 1688–1694.CrossRefGoogle Scholar
  30. 30.
    Suresh, Y., Annapurna, S., Bhikshamaiah, G., & Singh, A. K. (2016). Green luminescent copper nanoparticles. IOP Conference Series: Materials Science and Engineering, 149, 012187.CrossRefGoogle Scholar
  31. 31.
    Lanje, A. S., Sharma, S. J., Pode, R. B., & Raghumani, S. (2010). Ningthoujam, Synthesis and optical characterization of copper oxide nanoparticles. Advances in Applied Science Research, 1(2), 36–40.Google Scholar
  32. 32.
    Zhao, X., Wang, P., Yan, Z., & Ren, N. (2015). Room temperature photoluminescence properties of CuO nanowire arrays. Optical Materials, 42, 544–547.CrossRefGoogle Scholar
  33. 33.
    Ahamed, M., Siddiqui, M. A., Akhtar, M. J., Ahmad, I., Pant, A. B., & Alhadlaq, H. A. (2010). Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochemical and Biophysical Research Communications, 396, 578–583.CrossRefGoogle Scholar
  34. 34.
    Azam, A., Ahmed, A. S., Oves, M., Khan, M. S., & Memic, A. (2012). Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. International Journal of Nanomedicine, 7, 3527–3535.CrossRefGoogle Scholar
  35. 35.
    Bhunia, A. K., Samanta, P. K., Kamilya, T., & Saha, S. (2015). Chemical growth of spherical zinc oxide nanoparticles and their structural, optical properties. Journal of Physical Sciences, 20, 205–212.Google Scholar
  36. 36.
    Bhunia, A. K., Kamilya, T., & Saha, S. (2016). Optical and structural properties of protein capped ZnO nanoparticles and its antimicrobial activity. Journal of Advances in Biology & Biotechnology, 10(1), 1–9.CrossRefGoogle Scholar
  37. 37.
    Kahouli, M., Barhoumi, A., Al-Hajry, A., & Guermazi, S. (2015). Structural and optical properties of ZnO nanoparticles prepared by direct precipitation method. Superlattices and Microstructures, 85, 7–23.CrossRefGoogle Scholar
  38. 38.
    Dar, M. A., Ahsanulhaq, Q., Kim, Y. S., Sohn, J. M., Kim, W. B., & Shin, H. S. (2009). Versatile synthesis of rectangular shaped nanobat-like CuO nanostructures by hydrothermal method; structural properties and growth mechanism. Applied Surface Science, 255, 6279–6284.CrossRefGoogle Scholar
  39. 39.
    Bhunia, A. K., Samanta, P. K., Saha, S., & Kamilya, T. (2013). ZnO nanoparticle-protein interaction: corona formation with associated unfolding. Applied Physics Letters, 103, 143701.CrossRefGoogle Scholar
  40. 40.
    Bhunia, A. K., Kamilya, T., & Saha, S. (2016). Temperature dependent and kinetic study of the adsorption of bovine serum albumin to ZnO nanoparticle surfaces. ChemistrySelect, 1, 2872–2882.CrossRefGoogle Scholar
  41. 41.
    Zhang, T.-X., Zhu, G.-Y., Lu, B.-Y., Zhang, C.-L., & Peng, Q. (2017). Concentration-dependent protein adsorption at the nano–bio interfaces of polymeric nanoparticles and serum proteins. Nanomedicine (London, England), 12(22), 2757–2769.CrossRefGoogle Scholar
  42. 42.
    Kathiravan, A., Paramaguru, G., & Renganathan, R. (2009). Study on the binding of colloidal zinc oxide nanoparticles with bovine serum albumin. Journal of Molecular Structure, 934, 129–137.CrossRefGoogle Scholar
  43. 43.
    Benesi, H. A., & Hildebrand, J. H. (1949). Journal of the American Chemical Society, 71, 2703–2707.CrossRefGoogle Scholar
  44. 44.
    Lakowicz, J. R. (2006). Principles of Fluorescence Spectroscopy (3rd ed.) XXVI, 954. Springer.Google Scholar
  45. 45.
    Bhunia, A. K., Kamilya, T., & Saha, S. (2016). Photo relaxation change and emission quenching in different sizes of PbS-nanoparticles-protein corona. ChemistrySelect, 1, 5768–5778.CrossRefGoogle Scholar
  46. 46.
    Majorek, K. A., Porebski, P. J., Dayal, A., Zimmerman, M. D., Jablonska, K., Stewart, A. J., Chruszcz, M., & Minor, W. (2012). Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Molecular Immunology, 52(3-4), 174–182.CrossRefGoogle Scholar
  47. 47.
    Cowgill, R. W. (1967). Acta Protein Structure, 140, 37–44.CrossRefGoogle Scholar
  48. 48.
    Geldert, K. A., Liu, Y., Loh, K. P., & Lim, C. T. (2017). Nano-bio interactions between carbon nanomaterials and blood plasma proteins: why oxygen functionality matters. NPG Asia Materials, 9(1-12), e422.Google Scholar
  49. 49.
    Ansari, A., Sachar, S., & Garje, S. S. (2018). Synthesis of bare and surface modified TiO2 nanoparticles via a single source precursor and insights into their interactions with serum albumin. New Journal of Chemistry, 42, 13358–13366.CrossRefGoogle Scholar
  50. 50.
    Wang, G., Hou, H., Wang, S., Yan, C., & Liu, Y. (2017). Exploring the interaction of silver nanoparticles with lysozyme: Binding behaviors and kinetics. Colloids and Surfaces B: Biointerfaces, 157, 138–145.CrossRefGoogle Scholar
  51. 51.
    Bhunia, A. K., Kamilya, T., & Saha, S. (2017). Silver nanoparticle-human hemoglobin interface: time evolution of the corona formation and interaction phenomenon. Nano Convergence, 4, 28,1–28,2812.Google Scholar
  52. 52.
    Bhunia, A. K., Samanta, P. K., Saha, S., & Kamilya, T. (2014). Safety concerns towards the biomedical application of PbS nanoparticles: an approach through protein-PbS interaction and corona formation. Applied Physics Letters, 104, 123703.CrossRefGoogle Scholar
  53. 53.
    Esfandfara, P., Falahati, M., & Saboury, A. A. (2016). Spectroscopic studies of interaction between CuO nanoparticles and bovine serum albumin. Journal of Biomolecular Structure and Dynamics, 34(9)1962–1968.Google Scholar
  54. 54.
    Bhogalea, A., Patel, N., Sarpotdar, P., Mariam, J., Dongre, P. M., Miotello, A., & Kothari, D. C. (2013). Colloids and Surfaces, B: Biointerfaces, 102, 257–264.CrossRefGoogle Scholar
  55. 55.
    Hao, C., Xu, G., Feng, Y., Lu, L., Sun, W., & Sun, R. (2017). Fluorescence quenching study on the interaction of ferroferric oxide nanoparticles with bovine serum albumin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 184, 191–197.CrossRefGoogle Scholar
  56. 56.
    Wang, G., Lu, Y., Hou, H., & Liu, Y. (2017). Probing the binding behavior and kinetics of silver nanoparticles with bovine serum albumin. RSC Advances, 7, 9393–9401.CrossRefGoogle Scholar
  57. 57.
    Hill, A. V. (1913). The Biochemical Journal, 7, 471–480.Google Scholar
  58. 58.
    Hill, A. V. (1921). The Biochemical Journal, 15, 577–586.Google Scholar
  59. 59.
    Abraham, A. N., Sharma, T. K., Bansal, V., & Shukla, R. (2018). Phytochemicals as dynamic surface ligands to control nanoparticle−protein interactions. ACS Omega, 3, 2220–2229.CrossRefGoogle Scholar
  60. 60.
    Markarian, S. A., & Aznauryan, M. G. (2012). Study on the interaction between isoniazid and bovine serum albumin by fluorescence spectroscopy: the effect of dimethylsulfoxide. Molecular Biology Reports, 39, 7559–7567.CrossRefGoogle Scholar
  61. 61.
    Mudunkotuwa, I. A., & Grassian, V. H. (2014). Histidine adsorption on TiO2 nanoparticles: an integrated spectroscopic, thermodynamic, and molecular-based approach toward understanding nano–bio interactions. Langmuir, 30(29), 8751–8760.CrossRefGoogle Scholar
  62. 62.
    Ahmad, F., Zhou, Y., Ling, Z., Xiang, Q., & Zhou, X. (2016). Systematic elucidation of interactive unfolding and corona formation of bovine serum albumin with cobalt ferrite nanoparticles. RSC Advances, 6, 35719–35730.CrossRefGoogle Scholar
  63. 63.
    Arai, T., & Norde, W. (1990). Colloids and Surfaces, 51, 17–28.CrossRefGoogle Scholar
  64. 64.
    Lynch, I., & Dawson, K. A. (2008). Nano Today, 3, 40–47.CrossRefGoogle Scholar
  65. 65.
    Sun, B., Zhang, Y., Chen, W., Wang, K., & Zhu, L. (2018). Concentration dependent effects of bovine serum albumin on graphene oxide colloidal stability in aquatic environment. Environmental Science & Technology, 52(13), 7212–7219.CrossRefGoogle Scholar
  66. 66.
    Röcker, C., Pötz, M., Zhang, F., Parak, W. J., & Nienhaus, G. U. (2009). A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nature Nanotechnology, 4, 577–580.CrossRefGoogle Scholar
  67. 67.
    Rainbow, M. R., Atherton, S., & Eberhart, R. C. (1987). Journal of Biomedical Materials Research, 21(5), 539–555.CrossRefGoogle Scholar
  68. 68.
    Gao, D., Tian, Y., Bi, S., Chen, Y., Yu, A., & Zhang, H. (2005). Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 62, 1203–1208.CrossRefGoogle Scholar
  69. 69.
    Patel, A. S., Mishra, P., Kanaujia, P. K., Husain, S. S., Prakash, G. V., & Chakraborti, A. (2017). Investigating resonance energy transfer from protein molecules to van der Waals nanosheets. RSC Advances, 7, 26250.CrossRefGoogle Scholar
  70. 70.
    Elangovan, M., Day, R. N., & Periasamy, A. (2002). Nanosecond fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy to localize the protein interactions in a single living cell. Journal of Microscopy, 205(1), 3–14.MathSciNetCrossRefGoogle Scholar
  71. 71.
    Protein Data Bank (PDB).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsGovernment General Degree College at Gopiballavpur-IIJhargramIndia
  2. 2.Department of PhysicsVidyasagar UniversityPaschim MedinipurIndia

Personalised recommendations