Advertisement

BioNanoScience

, Volume 9, Issue 4, pp 773–777 | Cite as

Effect of Some Charged Polymers on the Activity of Pancreatic Porcine Lipase

  • Sergei Yu. ZaitsevEmail author
  • Anastasia A. Savina
  • Lilia S. Garnashevich
  • Marina S. Tsarkova
  • Ilia S. Zaitsev
Article

Abstract

Lipases play an important role in numerous metabolic reactions in all living species and may be activated at interfaces by some biopolymers in vivo, but inhibited—in vitro. The effect of two chitosan samples with different molecular weights on the activity of lipase from porcine pancreas (LPP) in triacetin hydrolysis was investigated. An equimolar amount or excess of chitosan activates LPP by a factor of 1.2 to 1.6. In order to support these data, a negatively charged polyelectrolyte—sodium polystyrene sulfonate (PSS)—was used instead of chitosan. A small increase in LPP activity was found also at an equimolar amount or excess of PSS. This unexpected effect can be explained as “interfacial activation” of LPP with opening of the hydrophobic channel for triacylglycerol hydrolysis. The observed activation effect is important for fundamental biochemistry of human and animal digestion models, as well as for further lipase applications.

Graphical abstract

Possible molecular interactions between chitosan and lipase from porcine pancreas

Keywords

Lipase Chitosan Enzyme immobilization Activity Triacetin 

Notes

Funding Information

This work was financially supported by the Russian Foundation for Basic Research (RFBR project 19-03-00717).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Sharma, R., Chisti, Y., & Banerjee, U. C. (2001). Production, purification, characterization, and applications of lipases. Biotechnology Advances, 19, 627–662.CrossRefGoogle Scholar
  2. 2.
    Vulfson, E. N. (1994). Industrial application of lipases. In W. P. Peterson & SB. (Eds.), Lipases – their structure, biochemistry and applications (pp. 271–288). Cambridge: Cambridge Univ. Press.  https://doi.org/10.1016/0307-4412(94)90017-5.CrossRefGoogle Scholar
  3. 3.
    Zaitsev, S. Y. (2010). Supramolecular nanosized systems at the phase interface: Concepts and prospects for bio-nanotechnologies. Moscow: LENAND.Google Scholar
  4. 4.
    Eremeev, N. L., & Zaitsev, S. Y. (2016). Рorcine pancreatic lipase as a catalyst in organic synthesis. Mini-Reviews in Organic Chemistry, 13(1), 78–85.  https://doi.org/10.2174/1570193X13666160225000520.CrossRefGoogle Scholar
  5. 5.
    Ren, S., Li, C., Jiao, X., Jia, S., & Cui, J. (2019). Recent progress in multienzymes co-immobilization and multienzyme system applications. Chemical Engineering Journal, 373(1), 1254–1278.CrossRefGoogle Scholar
  6. 6.
    Reis, P., Holmberg, K., Watzke, H., Leser, M. E., & Miller, R. (2009). Lipases at interfaces: a review. Advances in Colloid and Interface Science, 147–148, 237–250.  https://doi.org/10.1016/j.cis.2008.06.001.CrossRefGoogle Scholar
  7. 7.
    Hayes, D. G. (1996). The catalytic activity of lipases toward hydroxy fatty acids — a review. Journal of the American Oil Chemists’ Society, 73(5), 543–549.CrossRefGoogle Scholar
  8. 8.
    Chapus, C., Rovery, M., Sarda, L., & Verger, R. (1988). Pancreatic lipase and colipase. Biochimie, 70, 1223–1234.CrossRefGoogle Scholar
  9. 9.
    Zaitsev, S. Y. (2017). Biological chemistry: from biologically active substances to organs and tissues of animals. Moscow: Capital Print Publishing.Google Scholar
  10. 10.
    Lunagariya, N. A., Patel, N. K., Jagtap, S. C., & Bhutani, K. K. (2014). Inhibitors of pancreatic lipase: state of the art and clinical perspectives. EXCLI Journal, 13, 897–921.Google Scholar
  11. 11.
    Tsujita, T., Sumiyoshi, M., Takaku, T., Momsen, W. E., Lowe, M. E., & Brockman, H. L. (2003). Inhibition of lipases by ε-polylysine. Journal of Lipid Research, 44, 2278–2286.CrossRefGoogle Scholar
  12. 12.
    Tsujita, T., Takaichi, H., Takaku, T., Aoyama, S., & Hiraki, J. (2006). Antiobesity action of e-polylysine, a potent inhibitor of pancreatic lipase. Journal of Lipid Research, 47, 1852–1858.CrossRefGoogle Scholar
  13. 13.
    Tsujita, T., Sumiyoshi, M., Han, L.-K., Fujiwara, T., Tsujita, J., & Okuda, H. (2003). Inhibition of lipase activities by citrus pectin. Journal of Nutritional Science and Vitaminology, 49, 340–345.CrossRefGoogle Scholar
  14. 14.
    Wang, Q., Liang, J., & Liu, H. (2019). In vitro effects of four polysaccharides containing ß-D-Glup on intestinal function. International Journal of Food Properties, 22(1), 1064–1076.  https://doi.org/10.1080/10942912.2019.1628778.CrossRefGoogle Scholar
  15. 15.
    Tsujita, T., Takaichi, H., Takaku, T., Sawai, T., Yoshida, N., & Hiraki, J. (2007). Inhibition of lipase activities by basic polysaccharide. J Lipid Res, 48, 358–365.CrossRefGoogle Scholar
  16. 16.
    Ivanov, E. A., Aha, B., Volchenkova, T. A., & Zaitsev, S. Y. (2002). Investigation of enzymatic hydrolysis of lipid-like substrates and trilaurin in monolayers. Colloids and Surfaces B: Biointerfaces, 23(4), 349–356.  https://doi.org/10.1016/S0927-7765(01)00265-X.CrossRefGoogle Scholar
  17. 17.
    Zaitsev, S. Y., Gorokhova, I. V., Cashtigo, T. V., Zintchenco, A., & Dautzenberg, H. (2003). General approach for lipases immobilization in polyelectrolyte complexes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 221(1–3), 209–220.  https://doi.org/10.1016/S0927-7757(03)00137-7.CrossRefGoogle Scholar
  18. 18.
    Lairon, D., Lafont, H., Vigne, J. L., Nalbone, G., Leonardi, J., & Hauton, J. C. (1985). Effects of dietary fibers and cholestyramine on the activity of pancreatic lipase in vitro. The American Journal of Clinical Nutrition, 42(4), 629–638.  https://doi.org/10.1093/ajcn/42.4.629.CrossRefGoogle Scholar
  19. 19.
    Souza, A. L., Fj, P., Caseli, L., Volpati, D., Miranda, P. B., & Oliveira Jr., O. N. (2014). Chitosan does not inhibit enzymatic action of human pancreatic lipase in Langmuir monolayers of 1,2-didecanoyl-glycerol (DDG). Colloids and Surfaces B: Biointerfaces, 123, 870–877.  https://doi.org/10.1016/j.colsurfb.2014.10.040.Epub.
  20. 20.
    de Mello, M. D., Corderiro, D., Costa, L. T., & Follmer, C. (2013). Catalytic properties of lipases immobilized onto ultrasound-treated chitosan supports. Biotechnology and Bioprocess Engineering, 18(6), 1090–1100.CrossRefGoogle Scholar
  21. 21.
    Han, L.-K., Kimura, Y., & Okuda, H. (1999). Reduction in fat storage during chitin-chitosan treatment in mice fed a high-fat diet. International Journal of Obesity, 23, 174–179.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemistry DepartmentFederal State Budgetary Educational Institution of Higher Education “Moscow State Academy of Veterinary Medicine and Biotechnology - MVA after K.I. Skryabin”MoscowRussia
  2. 2.Institute of Bioorganic Chemistry RASMoscowRussia

Personalised recommendations