Advertisement

BioNanoScience

, Volume 9, Issue 4, pp 893–902 | Cite as

A Rapid and Efficient Biosynthesis of Metallic Nanoparticles Using Aqueous Extract of Chia (Salvia hispanica L.) Seeds

  • Neha Joshi
  • Abhishek Pathak
  • Rajaneesh Anupam
  • Neha Jain
  • Jai Singh
  • Chandrama Prakash UpadhyayaEmail author
Article
  • 48 Downloads

Abstract

This study reports the rapid and simple methodology for the biosynthesis of silver nanoparticles (AgNPs) using the aqueous extracts of Chia (Salvia hispanica L.) seed (AECS). This aqueous extract acts as the reducing agent, and the reduction of silver nitrate (AgNO3) solution at room temperature resulted in the synthesis of the AgNPs. The active phytochemical present in the AECS served as a stabilizing agent and favored the transition of Ag+ into the elemental silver. The UV-Visible absorption spectra of the reduced silver nitrate (AgNO3) solution showed an absorption band centered around 450 nm which confirmed the presence of NPs in the solution. The X-ray diffraction (XRD) analysis revealed the successful AgNP biosynthesis, and scanning electron microscopy investigations depicted the cubic phase of the NPs having spherical morphology with the particle size in the range of 40–60 nm. The Fourier transform infrared (FTIR) spectra confirmed the presence of various organic groups viz –OH, C=O, C–N, and N–H in the AECS solution and referred that these organic groups actually participated in the reduction of AgNO3 ultimately resulting in the development of the metallic NPs. The biogenic AgNPs exhibited the characteristics of enhanced free radical scavenging, reduction potential, and catalytic and antibacterial activities against pathogenic bacterial strains. A detailed mechanism of catalytic activity is discussed in this report. Furthermore, the AgNPs showed excellent antibacterial activity even at lower concentration (10 μg). Thus, we have developed a simple, rapid, one-step, and eco-friendly non-toxic method for the development of active AgNPs showing a higher antioxidant property, higher reduction potential, and enhanced catalytic and antibacterial activities.

Keywords

Silver nanoparticles Green synthesis Chia (Salvia hispanica L.) Antioxidant Anti-microbial activity Drug development 

Notes

Acknowledgements

The authors are thankful to the Sophisticated Instrumentation Facility of Dr. Harisingh Gour Central University, Sagar, India, for the use of instruments in NP analysis. NJ also acknowledges the UGC research fellowship from Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh, India. Authors also thank Dr Harisingh Gour Central University, Sagar, India for providing the Departmental Financial Support for research to conduct the experiments.

Compliance with Ethical Standards

Conflict of Interest

None.

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Funding Information

The authors acknowledge the facility and departmental funds provided by Dr Harisingh Gour Central University, Sagar, India to conduct the experiemnts.

References

  1. 1.
    Bogunia, K. K., & Sugisaka, M. (2002). From molecular biology to nanotechnology and nanomedicine. BioSystems, 65, 123–138.Google Scholar
  2. 2.
    Daniel, M. C., & Astruc, D. (2004). Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. J Chem Rev, 104, 293–346.Google Scholar
  3. 3.
    Perez, J., Bax, L., & Escolano, C. (2005). Roadmap report on nanoparticles. Barcelona: Willems & Van Den Wildenberg.Google Scholar
  4. 4.
    Cai, W., Gao, T., Hong, H., & Sun, J. (2008). Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl, 1, 17–32.Google Scholar
  5. 5.
    Zharov, V. P., Kim, J. W., Curiel, D. T., & Everts, M. (2005). Self-assembling nanoclusters in living systems: application for integrated photothermalnanodiagnostics and nanotherapy. Nanomed Nanotechnol Biol Med, 1, 326–345.Google Scholar
  6. 6.
    Wiley, B., Sun, Y., & Xia, Y. (2007). Synthesis of silver nanostructures with controlled shapes and properties. Acc Chem Res, 40, 1067–1076.Google Scholar
  7. 7.
    Thakkar, K. N., Mhatre, S. S., Rasesh, Y., & Parikh, M. S. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine, 6, 257–262.Google Scholar
  8. 8.
    Zahir, A. A., Chouhan, I. S., Bagavan, A., Kamaraj, C., Elango, G., Shankar, J., Arjaria, N., Roopan, S. M., Rahaman, A. A., & Singh, M. (2015). Green synthesis of silver and titanium dioxide nanoparticles using Euphorbia prostrata extract shows shift from apoptosis to G0/G1 arrest followed by necrotic cell death in Leishmani adonovani. Antimicrob Agents Chemother, 59, 4782–4799.Google Scholar
  9. 9.
    Momeni, S., & Nabipour, I. A. (2015). Simple green synthesis of palladium nanoparticles with Sargassum alga and their electrocatalytic activities towards hydrogen peroxide. Appl Biochem Biotechnol, 176, 1937–1949.Google Scholar
  10. 10.
    Singh, P., Kim, Y. J., Zhang, D., & Yang, D. C. (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol, 34, 588–599.Google Scholar
  11. 11.
    Joshi, N., Jain, N., Pathak, A., Singh, J., Prasad, R., & Upadhyaya, C. P. (2018). Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities. J Sol-Gel Sci Technol, 86, 682–689.Google Scholar
  12. 12.
    Baker, S., Devaraju, R., Kavitha, K. S., Santosh, P., Kavitha, H. U., Rao, Y., & Satish, S. (2013). Plants: emerging as nanofactories towards facile route in synthesis of nanoparticles. Bioimpacts, 3, 111–117.Google Scholar
  13. 13.
    Makarov, V. V., Love, A. J., Sinitsyna, O. V., Makarova, S. S., Yaminsky, I. V., Taliansky, M. E., & Kalinina, N. O. (2014). “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat, 6, 35–44.Google Scholar
  14. 14.
    Kumar, B., Smita, K., Cumbal, L., & Debut, A. (2014). Sacha inchi (Plukenetia volubilis L.) oil for one pot synthesis of silver nanocatalyst: an eco-friendly approach. Ind Crop Prod, 58, 238–243.Google Scholar
  15. 15.
    Noruzi, M. (2015). Biosynthesis of gold nanoparticles using plant extracts. Bioprocess Biosyst Eng, 38, 1–14.Google Scholar
  16. 16.
    Ghosh, S. K., & Pal, T. (2007). Inter-particle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to application. Chem Rev, 107, 4797–4862.Google Scholar
  17. 17.
    Kumar, B., Smita, K., Cumbal, L., & Debut, A. (2014). Sacha inchi (Plukenetia volubilis L.) shell biomass for synthesis of silver nanocatalyst. J Saudi Chem Soc, 21, 293–298.Google Scholar
  18. 18.
    Nasrollahzadeh, M., & Sajadi, S. M. (2015). Green synthesis of copper nanoparticles using Ginkgo biloba L. leaf extract and their catalytic activity for the Huisgen [+2] cyclo addition of azides and alkynes at room temperature. J Colloid Interface Sci, 457, 141–147.Google Scholar
  19. 19.
    Prasad, R., Pandey, R., & Barman, I. (2016). Engineering tailored nanoparticles with microbes: quo vadis? WIREs. Nanomed Nanobiotechnol, 8, 316–330.Google Scholar
  20. 20.
    Creighton, A., Blatchford, C. G., & Albrecht, M. G. (1979). Plasma resonance enhancement of raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J Chem Soc, 75, 790–798.Google Scholar
  21. 21.
    Premasudha, P., Venkataramana, M., Abirami, M., Vanathi, P., Krishna, K., & Rajendran, R. (2015). Biological synthesis and characterization of silver nanoparticles using Eclipta alba leaf extract and evaluation of its cytotoxic and antimicrobial potential. Bull Mater Sci, 38, 965–973.Google Scholar
  22. 22.
    Arvizo, R. R., Bhattacharyya, S., Kudgus, R. A., Giri, K., Bhattacharya, R., & Mukherjee, P. (2012). Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev, 4, 2943–2970.Google Scholar
  23. 23.
    Aziz, N., Faraz, M., Pandey, R., Shakir, M., Fatma, T., Varma, A., Barman, I., & Prasad, R. (2015). Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir, 31, 11605–11612.Google Scholar
  24. 24.
    Ip, M., Lui, S. L., Poon, V. K. M., Lung, I., & Burd, A. (2006). Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol, 55, 59–63.Google Scholar
  25. 25.
    Chandran, S. P., Chaudhary, M., Pasricha, R., Ahmad, A., & Sastry, M. (2006). Synthesis of gold nanotriangles and silver nanoparticles using aloe vera plant extract. Biotechnol Prog, 22, 577–583.Google Scholar
  26. 26.
    Nadagouda, M. N., & Varma, R. S. (2008). Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem, 10, 859–862.Google Scholar
  27. 27.
    Philip, D. (2009). Biosynthesis of Au, Ag, and Au-Ag nanoparticles using edible mushroom extract. Spectrochim Acta A, 73, 374–381.Google Scholar
  28. 28.
    Kaviya, S., Santhanalakshmi, J., Viswanathan, B., Muthumary, J., & Srinivasan, K. (2011). Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta A, 79, 594–598.Google Scholar
  29. 29.
    Vijayaraghavan, K., Nalini, S. P. K., Prakash, N. U., & Madhankumar, D. (2012). Biomimetic synthesis of silver nanoparticles by aqueous extract of Syzygium aromaticum. Mater Lett, 75, 33–35.Google Scholar
  30. 30.
    Marimuthu, G., Marcello, N., & Giovanni, B. (2016). Bio-physical characterization of poly-dispersed silver nanocrystals fabricated using Carissa spinarum: a potent tool against mosquito vectors. J Clust Sci, 27, 745–761.Google Scholar
  31. 31.
    Marimuthu, G., Mohan, R., Kaliyan, V. K., Udaiyan, M., & Giovanni, B. (2016). Green synthesis and characterization of silver nanoparticles fabricated using Anisomeles indica: Mosquitocidal potential against malaria, dengue and Japanese encephalitis vectors. J Exp Parasitol, 161, 40–47.Google Scholar
  32. 32.
    Álvarez-Chávez, L. M., Valdivia-López, M. D. A., Aburto-Juárez, M. D. L., & Tecante, A. (2008). Chemical characterization of the lipid fraction of mexican chia seed (Salvia hispanicaL.). Int J Food Prop, 11, 687–697.Google Scholar
  33. 33.
    Reyes-Caudillo, E., Tecante, A., & Valdivia-López, M. A. (2008). Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chem, 107, 656–663.Google Scholar
  34. 34.
    Ixtaina, V. Y., Martínez, M. L., Spotorno, V., Mateo, C. M., Maestri, D. M., Diehl, B. W. K., Nolasco, S. M., & Tomás, M. C. (2011). Characterization of chia seed oils obtained by pressing and solvent extraction. J Food Compos Anal, 24, 166–174.Google Scholar
  35. 35.
    Capitani, M. I., Spotorno, V., Nolasco, S. M., & Tomás, M. C. (2012). Physicochemical and functional characterization of by-products from chia (Salvia hispanica L.) seeds of Argentina. LWT Food Sci Technol, 45, 94–102.Google Scholar
  36. 36.
    Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT - Food Sci Technol, 28, 25–30.Google Scholar
  37. 37.
    Oyaizu, M. (1986). Studies on product of browning reaction antioxidative activities of product of browning reaction prepared from glucosamine. Jpn J Nutr, 44, 307–315.Google Scholar
  38. 38.
    Suvith, V. S., & Philip, D. (2014). Catalytic degradation of methylene blue using biosynthesized gold and silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc, 118, 526–532.Google Scholar
  39. 39.
    Junejo, Y., Sirajuddin, S., Baykal, A., Safdar, M., & Balouch, A. (2014). A novel green synthesis and characterization of Ag NPs with its ultra-rapid catalytic reduction of methyl green dye. Appl Surf Sci, 290, 499–503.Google Scholar
  40. 40.
    Ganapuram, B. R., Alle, M., Dadigala, R., Dadigala, R., Dasari, A., Maragoni, V., & Guttena, V. (2015). Catalytic reduction of methylene blue and Congo red dyes using green synthesized gold nanoparticles capped by Salmaliam alabarica gum. Int Nano Lett, 5, 215–222.Google Scholar
  41. 41.
    Perez, C., Pauli, M., & Bezevque, P. (1990). An antibiotic assay by the agar well diffusion method. Acta Biol Med Exp, 15, 113–115.Google Scholar
  42. 42.
    Nanda, A., & Saravanan, M. (2009). Biosynthesis of silver nanoparticles from staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine, 5, 452–456.Google Scholar
  43. 43.
    Leitão Muniz, F., Marcus, M., Santos, M., Sasaki, C., & José, J. (2016). The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr Sect A: Found Adv, 72, 3.MathSciNetzbMATHGoogle Scholar
  44. 44.
    Sen, S., Chakraborty, R., Sridhar, C., Reddy, Y. S. R., & De, B. (2010). Free radicals, antioxidants, diseases and phytomedicines: Current status and future prospect. Int J Pharm Sci Rev Res, 3(1), 91–100.Google Scholar
  45. 45.
    Yen, G. C., Duh, P. D., & Tsai, C. (1993). Relationship between antioxidant activity and maturity of peanut hulls. J Agric Food Chem, 41, 67–70.Google Scholar
  46. 46.
    Gulcin, I., Oktay, M., Kirecci, E., & Kufrevioglu, I. (2003). Screening of antioxidant and antimicrobial activities of anise (Pimpella anisum L.) seed extracts. Food Chem, 83, 371–382.Google Scholar
  47. 47.
    Chatterjee, S., Lee, M. W., & Woo, S. H. (2010). Adsorption of a cationic dye, methylene blue, on to chitosan hydrogel beads generated by anionic surfactant gelation adsorpation. Bioresour Technol, 101, 1800–1806.Google Scholar
  48. 48.
    Han, R., Ding, D., Xu, Y., Zou, W., Wang, Y., Li, Y., & Zou, L. (2008). Use of rice husk for the adsorption of Congo red from aqueous solution in column mode. Bioresour Technol, 99, 2938–2946.Google Scholar
  49. 49.
    Lin, C., Tao, K., Hua, D., Ma, Z., & Zhou, S. (2013). Size effect of gold nanoparticles in catalytic reduction of p-nitrophenol with NaBH4. Molecules, 18(10), 12609–12620.Google Scholar
  50. 50.
    Kim, J. S., Kuk, E., Yu, E. N., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., & Hwang, C. Y. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine, 3, 95–101.Google Scholar
  51. 51.
    Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv, 27, 76–83.Google Scholar
  52. 52.
    Cho, K. H., Park, J. E., Osaka, T., & Park, S. G. (2005). The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta, 51(5), 956–960.Google Scholar
  53. 53.
    Raffi, M., Hussain, F., Bhatti, T. M., Akhter, J. I., Hameed, A., & Hasan, M. M. (2008). Antibacterial characterization of silver nanoparticles against E. Coli ATCC-15224. J Mater Sci Technol, 24(2), 192–196.Google Scholar
  54. 54.
    Loo, S. L., Krantz, W. B., Fane, A. G., Hu, X., & Lim, T. T. (2015). Effect of synthesis routes on the properties and bactericidal activity of cryogels incorporated with silver nanoparticles. RSC Adv, 5, 44626–44635.Google Scholar
  55. 55.
    Pereira, L. R., Mehboob, F., Stams, A. J. M., & Alves, M. S. (2015). Metallic nanoparticles: Microbial synthesis and unique properties for biotechnological applications, bioavailability and biotransformation. Crit Rev Biotechnol, 35, 114–128.Google Scholar
  56. 56.
    Ahamed, M., Alsalhi, M. S., & Siddiqui, M. K. (2010). Silver nanoparticle applications and human health. Clin Chim Acta, 411, 1841–1848.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyDr. Harisingh Gour Central UniversitySagarIndia
  2. 2.Department of PhysicsDr. Harisingh Gour Central UniversitySagarIndia

Personalised recommendations