Advertisement

BioNanoScience

, Volume 9, Issue 4, pp 873–882 | Cite as

Characterization and Antibacterial Activity Study of Hydrothermally Synthesized h-MoO3 Nanorods and α-MoO3 Nanoplates

  • Sapan Kumar SenEmail author
  • Seema Dutta
  • Md. Razib Khan
  • M. S. Manir
  • Supria Dutta
  • Abdul Al Mortuza
  • Sultana Razia
  • M. A. Hakim
Article

Abstract

A nanostructured material is a newly emerging field in healthcare environment application because it exhibits strong antibacterial activity by preventing bacterial growth as bacteria are gradually becoming antibiotic resistant. In this article, a potential candidate of antibacterial material, molybdenum trioxide (MoO3), having two phases: the hexagonal and orthorhombic nanocrystals, were successfully synthesized by facile hydrothermal method. Then, the structural, morphological, functional, and optical properties of both h-MoO3 nanorods and α-MoO3 nanoplates were characterized by X-ray diffractometer (XRD), field emission scanning electron microscope (FESEM), Fourier-transform infrared spectroscopy (FTIR), and UV-Vis-NIR spectrophotometer, respectively. XRD patterns revealed hexagonal to orthorhombic phase transition after annealing at 450 °C for 2 h, supported by FTIR spectra. The micrograph analysis by FESEM also confirmed the 1D hexagonal nanorod structure collapsed and converted into two-dimensional (2D) plate-like orthorhombic structure after annealing. The crystallite size and optical bandgap increased from 35 to 135 nm and 2.83 to 2.87 eV, respectively, after phase transformation. The antibacterial activities of both samples were assessed against two Gram-positive bacteria viz. Bacillus subtilis and Staphylococcus aureus and two Gram-negative viz. Escherichia coli and Salmonella enteritidis by agar well diffusion method. The hexagonal nanorods exhibited more activity compared with nanoplates. It was found that the antibacterial activity of the nanoparticles decreased with increasing crystallite size.

Keywords

Antibacterial agents Surface and clinical care Optical bandgap h-MoO3 nanorods and α-MoO3 nanoplates Healthcare-associated infections (HAIs) 

Notes

Acknowledgments

We would like to thank Dr. M, A. Hakim of Department of Glass and Ceramic Engineering and Dr. Md. Kamruzzaman Pramanik, Microbiology and Industrial Irradiation Division, for their cordial supports.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Funding Statement

None.

References

  1. 1.
    Krishnamoorthy, K., Veerapandian, M., Yun, K., & Jae, S. (2013). New function of molybdenum trioxide nanoplates : toxicity towards pathogenic bacteria through membrane stress. Colloids and Surfaces B: Biointerfaces, 112, 521–524.  https://doi.org/10.1016/j.colsurfb.2013.08.026.CrossRefGoogle Scholar
  2. 2.
    Krishnamoorthy, K., & Premanathan, M. (2014). Nanostructured molybdenum oxide-based antibacterial paint: effective growth inhibition of various pathogenic bacteria. Nanotechnology, 315101(25), 10pp.  https://doi.org/10.1088/0957-4484/25/31/315101.CrossRefGoogle Scholar
  3. 3.
    Poole, K. (2001). Multidrug resistance in Gram-negative bacteria. Current Opinion in Microbiology, 4(5), 500–508.  https://doi.org/10.1016/S1369-5274(00)00242-3.CrossRefGoogle Scholar
  4. 4.
    Krishnamoorthy, K., Moon, J. Y., Hyun, H. B., Cho, S. K., & Kim, S. J. (2012). Mechanistic investigation on the toxicity of MgO nanoparticles toward cancer cells. Journal of Materials Chemistry, 22(47), 24610–24617.  https://doi.org/10.1039/c2jm35087d.CrossRefGoogle Scholar
  5. 5.
    Moritz, M., & Geszke-moritz, M. (2013). The newest achievements in synthesis , immobilization and practical applications of antibacterial nanoparticles. Chemical Engineering Journal, 228, 596–613.  https://doi.org/10.1016/j.cej.2013.05.046.CrossRefGoogle Scholar
  6. 6.
    Holtz, R. D., Lima, B. A., Souza Filho, A. G., Brocchi, M., & Alves, O. L. (2012). Nanostructured silver vanadate as a promising antibacterial additive to water-based paints. Nanomedicine: Nanotechnology, Biology, and Medicine, 8(6), 935–940.  https://doi.org/10.1016/j.nano.2011.11.012.CrossRefGoogle Scholar
  7. 7.
    Raghupathi, K. R., Koodali, R. T., & Manna, A. C. (2011). Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 27(7), 4020–4028.  https://doi.org/10.1021/la104825u.CrossRefGoogle Scholar
  8. 8.
    Das, D., Nath, B. C., Phukon, P., & Dolui, S. K. (2013). Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids and Surfaces B: Biointerfaces, 101, 430–433.  https://doi.org/10.1016/j.colsurfb.2012.07.002.CrossRefGoogle Scholar
  9. 9.
    Li, Y., Yu, H., Huang, X., Wu, Z., & Chen, M. (2017). A simple synthesis method to prepare a molybdenum oxide hole-transporting layer for efficient polymer solar cells. RSC Advances, 7(13), 7890–7900.  https://doi.org/10.1039/c7ra00303j.CrossRefGoogle Scholar
  10. 10.
    Dagar, J., Tyagi, P., Ahmad, R., Singh, R., Sinha, O. P., Suman, C. K., & Srivastava, R. (2015). Application of 2D-MoO3 nano-flakes in organic light emitting diodes: effect of semiconductor to metal transition with irradiation. RSC Advances, 5(11), 8397–8403.  https://doi.org/10.1039/C4RA12430H.CrossRefGoogle Scholar
  11. 11.
    Zhou, L., Yang, L., Yuan, P., Zou, J., Wu, Y., & Yu, C. (2010). α-MoO3 nanobelts: a high performance cathode material for lithium ion batteries. The Journal of Physical Chemistry C, 114(49), 21868–21872.  https://doi.org/10.1021/jp108778v.CrossRefGoogle Scholar
  12. 12.
    Cauduro, A. L. F., Dos Reis, R., Chen, G., Schmid, A. K., Méthivier, C., Rubahn, H. G., et al. (2017). Crystalline molybdenum oxide thin-films for application as interfacial layers in optoelectronic devices. ACS Applied Materials and Interfaces, 9(8), 7717–7724.  https://doi.org/10.1021/acsami.6b14228.CrossRefGoogle Scholar
  13. 13.
    Ranjba, M., Delalat, F., & Salamati, H. (2017). Molybdenum oxide nanosheets prepared by an anodizing-exfoliation process and observation of photochromic properties. Applied Surface Science, 396, 1752–1759.  https://doi.org/10.1016/j.apsusc.2016.11.225.CrossRefGoogle Scholar
  14. 14.
    Ji, F., Ren, X., Zheng, X., Liu, Y., Pang, L., Jiang, J., & Liu, S. (Frank). (2016). 2D-MoO3 nanosheets for superior gas sensors. Nanoscale, 8(16), 8696–8703.  https://doi.org/10.1039/C6NR00880A.CrossRefGoogle Scholar
  15. 15.
    Prakash, N. G., Dhananjaya, M., Narayana, A. L., Shaik, D. P., Rosaiah, P., & Hussain, O. M. (2018). High performance one dimensional α-MoO3 nanorods for supercapacitor applications. Ceramics International, 44(8), 9967–9975.  https://doi.org/10.1016/j.ceramint.2018.03.032.CrossRefGoogle Scholar
  16. 16.
    Hu, H., Deng, C., Xu, J., Zhang, K., & Sun, M. (2015). Metastable h -MoO3 and stable α -MoO3 microstructures: controllable synthesis, growth mechanism and their enhanced photocatalytic activity. Journal of Experimental Nanoscience, 10(17), 1336–1346.  https://doi.org/10.1080/17458080.2015.1012654.CrossRefGoogle Scholar
  17. 17.
    Andersson, G., & Magnéli, A. (1950). On the crystal structure of molybdenum trioxide. Acta Chemica Scandinavica, 4, 793–797.  https://doi.org/10.3891/acta.chem.scand.04-0793.CrossRefGoogle Scholar
  18. 18.
    McCarron, E. M. (1986). β-MoO 3 : a metastable analogue of WO3. Journal of the Chemical Society, Chemical Communications, 101(4), 336–338.  https://doi.org/10.1039/C39860000336.CrossRefGoogle Scholar
  19. 19.
    Zhou, J., Xu, N. S., Deng, S. Z., Chen, J., She, J. C., & Wang, Z. L. (2003). Large-area nanowire arrays of molybdenum and molybdenum oxides: synthesis and field emission properties. Advanced Materials, 15(21), 1835–1840.  https://doi.org/10.1002/adma.200305528.CrossRefGoogle Scholar
  20. 20.
    Ramana, C. V., Atuchin, V. V., Troitskaia, I. B., Gromilov, S. A., Kostrovsky, V. G., & Saupe, G. B. (2009). Low-temperature synthesis of morphology controlled metastable hexagonal molybdenum trioxide (MoO3). Solid State Communications, 149(1–2), 6–9.  https://doi.org/10.1016/j.ssc.2008.10.036.CrossRefGoogle Scholar
  21. 21.
    Deki, S., Béléké, A. B., Kotani, Y., & Mizuhata, M. (2009). Liquid phase deposition synthesis of hexagonal molybdenum trioxide thin films. Journal of Solid State Chemistry, 182(9), 2362–2367.  https://doi.org/10.1016/j.jssc.2009.06.033.CrossRefGoogle Scholar
  22. 22.
    Song, J., Ni, X., Gao, L., & Zheng, H. (2007). Synthesis of metastable h-MoO3 by simple chemical precipitation. Materials Chemistry and Physics, 102(2–3), 245–248.  https://doi.org/10.1016/j.matchemphys.2006.12.011.CrossRefGoogle Scholar
  23. 23.
    Sayede, A. D., Amriou, T., Pernisek, M., Khelifa, B., & Mathieu, C. (2005). An ab initio LAPW study of the α and β phases of bulk molybdenum trioxide, MoO3. Chemical Physics, 316(1–3), 72–82.  https://doi.org/10.1016/j.chemphys.2005.04.036.CrossRefGoogle Scholar
  24. 24.
    Rakkesh, R. A., & Balakumar, S. (2015). Morphology dependent photocatalytic activity of α-MoO3 nanostructures towards mutagenic acridine orange dye. Journal of Nanoscience and Nanotechnology, 15(6), 4316–4324.  https://doi.org/10.1166/jnn.2015.9723.CrossRefGoogle Scholar
  25. 25.
    Dong, W., & Dunn, B. (1998). Sol–gel synthesis and characterization of molybdenum oxide gels. Journal of Non-Crystalline Solids, 225, 135–140.  https://doi.org/10.1016/S0022-3093(98)00018-0.CrossRefGoogle Scholar
  26. 26.
    Parviz, D., Kazemeini, M., Rashidi, A. M., & Jafari Jozani, K. (2010). Synthesis and characterization of MoO3 nanostructures by solution combustion method employing morphology and size control. Journal of Nanoparticle Research, 12(4), 1509–1521.  https://doi.org/10.1007/s11051-009-9727-6.CrossRefGoogle Scholar
  27. 27.
    Cai, L., Rao, P. M., & Zheng, X. (2011). Morphology-controlled flame synthesis of single, branched, and flower-like α-MoO3 nanobelt arrays. Nano Letters, 11(2), 872–877.  https://doi.org/10.1021/nl104270u.CrossRefGoogle Scholar
  28. 28.
    Zeng, H. C. (1998). Chemical etching of molybdenum trioxide: a new tailor-made synthesis of MoO3 catalysts. Inorganic Chemistry, 37(3), 1967–1973.  https://doi.org/10.1021/Ic971269v.CrossRefGoogle Scholar
  29. 29.
    Klinbumrung, A., Thongtem, T., & Thongtem, S. (2012). Characterization of orthorhombic α-MoO3 microplates produced by a microwave plasma process. Journal of Nanomaterials, 2012.  https://doi.org/10.1155/2012/930763.CrossRefGoogle Scholar
  30. 30.
    Kim, H.-U., Son, J., Kulkarni, A., Ahn, C., Kim, K. S., Shin, D., et al. (2017). Highly uniform wafer-scale synthesis of α -MoO3 by plasma enhanced chemical vapor deposition. Nanotechnology, 28(17), 175601.  https://doi.org/10.1088/1361-6528/aa67d1.CrossRefGoogle Scholar
  31. 31.
    Song, L. X., Xia, J., Dang, Z., Yang, J., Wang, L. B., & Chen, J. (2012). Formation, structure and physical properties of a series of α-MoO3 nanocrystals: from 3D to 1D and 2D. CrystEngComm, 14(8), 2675.  https://doi.org/10.1039/c2ce06567c.CrossRefGoogle Scholar
  32. 32.
    Fakhri, A., & Nejad, P. A. (2016). Antimicrobial, antioxidant and cytotoxic effect of molybdenum trioxide nanoparticles and application of this for degradation of ketamine under different light illumination. Journal of Photochemistry and Photobiology B: Biology, 159, 211–217.  https://doi.org/10.1016/j.jphotobiol.2016.04.002.CrossRefGoogle Scholar
  33. 33.
    Desai, N., & Mali, S. (2015). Chemically grown MoO3 nanorods for antibacterial activity study. Journal of Nanomedicine & Nanotechnology, 06(06).  https://doi.org/10.4172/2157-7439.1000338.
  34. 34.
    Shafaei, S., Dörrstein, J., Guggenbichler, J. P., & Zollfrank, C. (2017). Cellulose acetate-based composites with antimicrobial properties from embedded molybdenum trioxide particles. Letters in Applied Microbiology, 64(1), 43–50.  https://doi.org/10.1111/lam.12670.CrossRefGoogle Scholar
  35. 35.
    Zollfrank, C., Gutbrod, K., Wechsler, P., & Guggenbichler, J. P. (2012). Antimicrobial activity of transition metal acid MoO3 prevents microbial growth on material surfaces. Materials Science and Engineering C, 32(1), 47–54.  https://doi.org/10.1016/j.msec.2011.09.010.CrossRefGoogle Scholar
  36. 36.
    Shafaei, S., Van Opdenbosch, D., Fey, T., Koch, M., Kraus, T., Guggenbichler, J. P., & Zollfrank, C. (2016). Enhancement of the antimicrobial properties of orthorhombic molybdenum trioxide by thermal induced fracturing of the hydrates. Materials Science and Engineering C, 58, 1064–1070.  https://doi.org/10.1016/j.msec.2015.09.069.CrossRefGoogle Scholar
  37. 37.
    Kumar, A., & Pandey, G. (2017). Synthesis , characterization , effect of temperature on band gap energy of molybdenum oxide nano rods and their antibacterial activity. American Journal of Nanosciences, 3(4), 81–85.  https://doi.org/10.11648/j.ajn.20170304.12.CrossRefGoogle Scholar
  38. 38.
    Krishnamoorthy, K., Premanathan, M., Veerapandian, M., & Jae Kim, S. (2014). Nanostructured molybdenum oxide-based antibacterial paint: Effective growth inhibition of various pathogenic bacteria. Nanotechnology, 25(31).  https://doi.org/10.1088/0957-4484/25/31/315101.CrossRefGoogle Scholar
  39. 39.
    Kothaplamoottil, S., Akshay, S., Vinod, K. K. P., & Rajendra, V. T. P. (2019). Greener assembling of MoO3 nanoparticles supported on gum arabic: cytotoxic effects and catalytic efficacy towards reduction of p - nitrophenol. Clean Technologies and Environmental Policy.  https://doi.org/10.1007/s10098-019-01726-9.CrossRefGoogle Scholar
  40. 40.
    Angamuthuraj, C., Rajeswari Yogamalar, N., & A. C. B. (2016). Hydrothermally synthesized h-MoO3 and α-MoO3 nanocrystals: new findings on crystal structure dependent charge transport. Crystal Growth & Design, 16(4), 1984–1995.  https://doi.org/10.1021/acs.cgd.5b01571.CrossRefGoogle Scholar
  41. 41.
    Chithambararaj, A., Sanjini, N. S., Velmathi, S., & Chandra Bose, A. (2013). Preparation of h-MoO3 and α-MoO3 nanocrystals: comparative study on photocatalytic degradation of methylene blue under visible light irradiation. Physical Chemistry Chemical Physics, 15(35), 14761.  https://doi.org/10.1039/c3cp51796a.CrossRefGoogle Scholar
  42. 42.
    Wongkrua, P., Thongtem, T., & Thongtem, S. (2013). Synthesis of h- and α -MoO3 by refluxing and calcination combination: phase and morphology transformation, photocatalysis, and photosensitization. Journal of Nanomaterials, 2013.  https://doi.org/10.1155/2013/702679.CrossRefGoogle Scholar
  43. 43.
    Sen, S. K., Noor, M., Al Mamun, M. A., Manir, M. S., Matin, M. A., Hakim, M. A., et al. (2019). An investigation of 60Co gamma radiation-induced effects on the properties of nanostructured α-MoO3 for the application in optoelectronic and photonic devices. Optical and Quantum Electronics, 51(3), 82.  https://doi.org/10.1007/s11082-019-1797-9.CrossRefGoogle Scholar
  44. 44.
    Badr, A. M., Elshaikh, H. A., & Afify, H. H. (2017). Hydrothermal synthesis and influence of later heat treatment on the structural evolution , optical and electrical properties of nanostructured α -MoO3 single crystals. Journal of Physics D: Applied Physics, 50, 505111 (13pp). doi: https://doi.org/10.1088/1361-6463/aa97aa.CrossRefGoogle Scholar
  45. 45.
    Chithambararaj, A., Winston, B., Sanjini, N. S., Velmathi, S., & Bose, A. C. (2015). Band gap tuning of h-MoO3 nanocrystals for efficient visible light photocatalytic activity against methylene blue dye. Journal of Nanoscience and Nanotechnology, 15(7), 4913–4919.  https://doi.org/10.1166/jnn.2015.9846.CrossRefGoogle Scholar
  46. 46.
    Hossain, M. K., Mortuza, A. A., Sen, S. K., Basher, M. K., Ashraf, M. W., Tayyaba, S., et al. (2018). A comparative study on the influence of pure anatase and Degussa-P25 TiO2 nanomaterials on the structural and optical properties of DSSC photoanode. Optik, 171(March), 507–516.  https://doi.org/10.1016/j.ijleo.2018.05.032.CrossRefGoogle Scholar
  47. 47.
    Jangade, P., Arjunwadkar, P. R., & Nagarbawadi, M. A. (2016). Structural characterization of lead titanate ( PbTiO3 ) sample using FULLPROF. IOSR Journal of Applied Physics, 8(6), 57–60.  https://doi.org/10.9790/4861-0806055760.
  48. 48.
    Po, B. (2013). Rietveld refinement and ionic conductivity of Ca8.4Bi1.6(PO4)6O1.8. Journal of Solid State Chemistry, 197, 154–159.  https://doi.org/10.1016/j.jssc.2012.08.005.CrossRefGoogle Scholar
  49. 49.
    Bih, H., Saadoune, I., Bih, L., Mansori, M., Toufik, H., Fuess, H., & Ehrenberg, H. (2016). Synthesis, Rietveld refinements, infrared and Raman spectroscopy studies of the sodium diphosphate NaCryFe1-yP2O7 (0 ≤ y ≤ 1). Journal of Molecular Structure, 1103, 103–109.  https://doi.org/10.1016/j.molstruc.2015.09.014.CrossRefGoogle Scholar
  50. 50.
    Lemine, O. M., Bououdina, M., Sajieddine, M., Al-Saie, A. M., Shafi, M., Khatab, A., et al. (2011). Synthesis, structural, magnetic and optical properties of nanocrystalline ZnFe2O4. Physica B: Condensed Matter, 406(10), 1989–1994.  https://doi.org/10.1016/j.physb.2011.02.072.CrossRefGoogle Scholar
  51. 51.
    Sahai, A., Goswami, N., Mishra, M., & Gupta, G. (2018). Structural, vibrational and electronic properties of CuO nanoparticles synthesized via exploding wire technique. Ceramics International, 44(2), 2478–2484.  https://doi.org/10.1016/j.ceramint.2017.10.224.CrossRefGoogle Scholar
  52. 52.
    Mendelson, M. I. (1969). Average grain size in polycrystalline ceramics. Journal of American Ceramic Soceity, 52(111), 443–446.  https://doi.org/10.1111/j.1151-2916.1969.tb11975.x.CrossRefGoogle Scholar
  53. 53.
    Shafaei, S., Lackner, M., Meier, M., Plank, J., Guggenbichler, J. P., & C. Z. (2013). Polymorphs of molybdenum trioxide as innovative antimicrobial materials. Surface Innovations, 1(SI4), 202–208.  https://doi.org/10.1680/si.13.00021.CrossRefGoogle Scholar
  54. 54.
    Muraoka, Y., Grenier, J.-C., Petit, S., & Pouchard, M. (1999). Preparation of hexagonal MoO3 by “Chimie Douce” reaction with NO2. Solid State Sciences, 1(2–3), 133–148.  https://doi.org/10.1016/S1293-2558(00)80070-9.CrossRefGoogle Scholar
  55. 55.
    Xia, T., Li, Q., Liu, X., Meng, J., & Cao, X. (2006). Morphology-controllable synthesis and characterization of single-crystal molybdenum trioxide. Journal of Physical Chemistry B, 110(5), 2006–2012.  https://doi.org/10.1021/jp055945n.CrossRefGoogle Scholar
  56. 56.
    Zakharova, G. S., Täschner, C., Volkov, V. L., Hellmann, I., Klingeler, R., Leonhardt, A., & Büchner, B. (2007). MoO3-δ nanorods: synthesis, characterization and magnetic properties. Solid State Sciences, 9(11), 1028–1032.  https://doi.org/10.1016/j.solidstatesciences.2007.07.022.CrossRefGoogle Scholar
  57. 57.
    Chen, Y., Lu, C., Xu, L., Ma, Y., Hou, W., & Zhu, J. J. (2010). Single-crystalline orthorhombic molybdenum oxide nanobelts: synthesis and photocatalytic properties. CrystEngComm, 12(11), 3740–3747.  https://doi.org/10.1039/c000744g.CrossRefGoogle Scholar
  58. 58.
    Chithambararaj, A., & Bose, A. C. (2011). Hydrothermal synthesis of hexagonal and orthorhombic MoO3 nanoparticles. Journal of Alloys and Compounds, 509(31), 8105–8110.  https://doi.org/10.1016/j.jallcom.2011.05.067.CrossRefGoogle Scholar
  59. 59.
    Sen, S. K., Chandra, T., Manir, M. S., Dutta, S., Hossain, M. N., & Podder, J. (2019). Effect of Fe-doping and post annealing temperature on the structural and optical properties of MoO 3nanosheets (pp. 1–13). Journal of Materials Science: Materials in Electronics.  https://doi.org/10.1007/s10854-019-01805-z.CrossRefGoogle Scholar
  60. 60.
    Chithambararaj, A., & Chandra Bose, A. (2014). Role of synthesis variables on controlled nucleation and growth of hexagonal molybdenum oxide nanocrystals: investigation on thermal and optical properties. CrystEngComm, 16(27), 6175–6186.  https://doi.org/10.1039/c4ce00418c.CrossRefGoogle Scholar
  61. 61.
    Shore, K. A. (2014). Electronic processes in non-crystalline materials (Second Edition), by N.F. Mott and E.A. Davis. Contemporary Physics, 55(4), 337–337. doi: https://doi.org/10.1080/00107514.2014.933254.CrossRefGoogle Scholar
  62. 62.
    Azam, A., & Oves, M. (2012). Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. International Journal of Nanomedicine, 7, 3527–3535.  https://doi.org/10.2147/IJN.S29020.CrossRefGoogle Scholar
  63. 63.
    Nin, Æ. N. (2008). Synthesis and antibacterial activity of silver nanoparticles with different sizes. Journal of Nanoparticle Research, 10, 1343–1348.  https://doi.org/10.1007/s11051-008-9428-6.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Electronics, Atomic Energy Research EstablishmentBangladesh Atomic Energy CommissionDhakaBangladesh
  2. 2.Department of Microbiology and Public HealthPatuakhali Science and Technology UniversityBarishalBangladesh
  3. 3.Microbiology and Industrial Irradiation Division, Institute of Food and Radiation Biology, AEREBangladesh Atomic Energy CommissionDhakaBangladesh
  4. 4.Institute of Radiation and Polymer Technology, AEREBangladesh Atomic Energy CommissionDhakaBangladesh
  5. 5.Ministry of Education, Government of the People’s Republic of BangladeshDhakaBangladesh
  6. 6.Department of Glass & Ceramic EngineeringBangladesh University of Engineering & TechnologyDhakaBangladesh

Personalised recommendations