, Volume 9, Issue 4, pp 799–812 | Cite as

Comparison of Antimicrobial, Antioxidant and Anticancer Activities of ZnO Nanoparticles Prepared by Lemon Juice and Citric Acid Fueled Solution Combustion Synthesis

  • Prashanth G. K
  • Prashanth P. AEmail author
  • Meghana Ramani
  • Ananda S
  • Nagabhushana B. M
  • Krishnaiah G. M
  • Nagendra H. G
  • Sathyananda H. M
  • Mutthuraju M
  • Rajendra Singh C


In the present work, combustion synthesis of ZnO nanoparticles using lemon juice and citric acid as fuels has been carried out. A comparative analysis of the obtained powders has been conducted to understand the strategic advantages of using lemon juice over citric acid as the combustion fuel for the synthesis of ZnO nanopartilcles. The X-ray diffractograms of both the samples revealed the presence of wurtzite hexagonal structure with the standard JCPDS pattern of zincite [36-1451] with varying crystallite sizes. Surface morphology of the samples was studied by scanning electron microscopy. Particle shapes and sizes were determined by transmission electron microscopy. Although wurtzite hexagonal structures were seen in both the synthesis methods, their morphology and sizes differed significantly with samples prepared by lemon juice presenting smaller size. The band gap energy value determined by Wood-Tauc method was found to be ~ 3.2 eV for both the samples. DPPH assay revealed the antioxidant activity of the samples at varied concentrations. Further, antimicrobial studies were greater for those prepared by lemon juice. Furthermore, trypan blue and MTT assay evaluation of nanoparticles against PC-3, HCT116, A549, and MDA-MB-231 cancer cell lines indicated enhanced anticancer activity of ZnO nanoparticles prepared by lemon juice. It was found that the sample prepared using lemon juice exhibited IC50 values of 78.80 μg/mL, 28.75 μg/mL, and 10.7 μg/mL, whereas the sample prepared using citric acid as fuel exhibited IC50 values of 103.6 μg/mL, 41.52 μg/mL, and 20.06 μg/mL, towards PC-3, HCT 116, and MDA-MB-231 respectively.


Combustion synthesis Bio-fuel Antimicrobial Antioxidant Cytotoxicity 



The author Prashanth G.K thanks the Management of Sri KET and Principal of Sir MVIT for the support and encouragement extended towards this project. The authors are grateful to Dr. Tejabhiram, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago for the valuable suggestions. The authors thank Dr. Vivek Polshettiwar, TIFR, Mumbai, for his constant and continued support in BET measurements. The authors acknowledge Nanotechnology Research Center, SRM University, for XRD measurements, IITM for HRTEM analysis, CeNSE, IISc, Bengaluru, for particle size measurements.

Compliance with Ethical Standards

Conflict of Interest


Research Involving Humans and Animals Statement

Research were conducted “in vitro” without involving humans and animals.

Informed Consent


Funding Statement



  1. 1.
    Patil, K. C., Aruna, S. C., & Mimani, M. (2002). Current Opinion in Solid State and Materials Science, 6, 507–512.Google Scholar
  2. 2.
    Patil, K. C., Hegde, M. S., Rattan, T., et al. (2008). Chemistry of nanocrystalline oxide materials. Singapore: World Scientific.Google Scholar
  3. 3.
    Nehru, L. C. (2013). Sanjeeviraja C ZnO nanoparticles by citric acid assisted microwave solution combustion method. Journal of Ceramic Processing Research, 6, 712–716.Google Scholar
  4. 4.
    Riahi-Noori, N., Sarraf-Mamoory, R., Alizadeh, P., & Mehdikhani, A. (2008). Synthesis of ZnO nano powder by a gel combustion method. Journal of Ceramic Processing Research, 3, 246–249.Google Scholar
  5. 5.
    Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine., 6, 257–262.Google Scholar
  6. 6.
    Willner, I., Basnar, B., & Willner, B. (2007). Nanoparticle-enzyme hybrid systems for nanobiotechnology. The FEBS Journal, 274, 302–309.Google Scholar
  7. 7.
    Mohanpuria, P., Rana, N. K., & Yadav, S. K. (2008). Biosynthesis of nanoparticles: technological concepts and future applications. Journal of Nanoparticle Research, 10, 507–517.Google Scholar
  8. 8.
    Verma, V. C., Kharwar, R. N., & Gange, A. C. (2010). Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine., 5, 33–40.Google Scholar
  9. 9.
    Saifuddin, N., Wong, C. W., & Yasumira, A. A. N. (2009). Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-Journal of Chemistry, 61–70.Google Scholar
  10. 10.
    Prasad, R. (2014). Synthesis of silver nanoparticles in photosynthetic plants. Journal of Nanoparticles. Google Scholar
  11. 11.
    Park, Y., Hong, Y. N., Weyers, A., Kim, Y. M., & Linhardt, R. J. (2011). Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnology, 3, 69–78.Google Scholar
  12. 12.
    Abramova, A. V., Abramov, V. O., Gedanken, A., Perelshtein, I., & Bayazitov, V. M. (2014). An ultrasonic technology for production of antibacterial nanomaterials and their coating on textiles. Beilstein Journal of Nanotechnology, 5, 532–536.Google Scholar
  13. 13.
    Clament Sagaya Selvam, N., Narayanan, S., John Kennedy, S., & Judith Vijaya, S. (2013). Pure and Mg-doped self-assembled ZnO nano-particles for the enhanced photocatalytic degradation of 4-chlorophenol. Journal of Environmental Sciences, 25, 2157–2167.Google Scholar
  14. 14.
    Law, M., Lori, E. G., Justin, C. J., Saykally, R., & Yang, P. (2005). Nanowire dye sensitized solar cells. Nature Materials, 4, 455–459.Google Scholar
  15. 15.
    Eita, M., El Labban, A., Cruciani, F., Usman, A., Beaujuge, P. M., & Mohammed OF. (2015). Ambient layer-by-layer ZnO assembly for highly efficient polymer bulk heterojunction solar cells. Advanced Functional Materials, 25, 1558–1564.Google Scholar
  16. 16.
    Wang, Z. L., & Song, J. (2006). Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312, 242–246.Google Scholar
  17. 17.
    Espitia, P. J. P., de Fatima Ferreira Soares, N., dos Reis Coimbra, J. S., de Andrade, N. J., Cruz, R. S., & Medeiros, E. A. A. (2012). Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging application food safety. Food and Bioprocess Technology, 5, 1447–1464.Google Scholar
  18. 18.
    Wan, Q., Li, Q. H., Chen, Y. J., Wang, T. H., He, X. L., Li, J. P., et al. (2014). Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Applied Physics Letters, 84, 3654.Google Scholar
  19. 19.
    Lu, P.-J., Huang, S.-C., Chen, Y.-P., Chiueh, L.-C., & Shih, D. Y. C. (2015). Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics. Journal of Food and Drug Analysis, 23, 587–594.Google Scholar
  20. 20.
    Oves, M., Arshad, M., Mohd, S. K., Arham, S. A., Azam, A., & Iqbal, M. I. I. (2015). Targeting water borne bacteria. Journal of Saudi Chemical Society, 19, 581–588.Google Scholar
  21. 21.
    Xiong, H.-M. (2013). ZnO nanoparticles applied to bioimaging and drug delivery. Advanced Materials, 25, 5329–5335.Google Scholar
  22. 22.
    Sharma, H., Mishra, P. K., Talegaonkar, S., & Vaidya, B. (2015). Metal nanoparticles: theranostic nanotool against cancer. Drug Discovery Today, 9, 114–1151.Google Scholar
  23. 23.
    Bayrami, A., Parvinroo, S., Habibi-Yangjeh, A., & Pouran, S. R. (2017). Bio-extract-mediated ZnO nanoparticles: microwave-assisted synthesis, characterization and antidiabetic activity evaluation. Artificial Cells, Nanomedicine, and Biotechnology. Scholar
  24. 24.
    Krishna, P. G., Ananthaswamy, P. P., Trivedi, P., Chaturvedi, V., Mutta, N. B., Sannaiah, A., et al. (2017). Antitubercular activity of ZnO nanoparticles prepared by solution combustion synthesis using lemon juice as bio-fuel. Materials Science and Engineering: C, 75, 1026–1033.Google Scholar
  25. 25.
    Prasad, D., Girija, C. R., Jagannatha Reddy, A., Nagabhushana, H., Nagabhushana, B. M., Venkatesha, T. V., & Arun Kumar, S. T. (2014). A study on the antibacterial activity of ZnO nanoparticles prepared by combustion method against E. coli. International Journal of Engineering Research and Applications, 4, 84–89.Google Scholar
  26. 26.
    Sumana, K. S., Nagabhushana, B. M., Shivakumara, C., Krishna, M., Chandrasekhara Murthy, C. S., & Raghavendra, N. (2012). Photoluminecence studies on ZnO nanopowders synthesized by solution combustion method. International Journal of Scientific and Research, 1, 83–86.Google Scholar
  27. 27.
    Inakhunbi Chanu, T., Muthukumar, T., & Manoharan, P. T. (2014). Fuel mediated solution combustion synthesis of ZnO supported gold clusters and nanoparticles and their catalytic activity and in vitro cytotoxicity. Physical Chemistry Chemical Physics, 16, 23686–23698.Google Scholar
  28. 28.
    Adriana, C. L., Afonso, R., Paulo, R. C. S., Luiz, F. L., Romulo, A. A., & Luiz, H. D. (2014). ZnO prepared by solution combustion synthesis: characterization and application as photoanode. Journal of the Brazilian Chemical Society, 25, 091–1100.Google Scholar
  29. 29.
    Nethravathi, P. C., Shruthi, G. S., Suresh, D., Udayabhanu, N. H., & Sharma, S. C. (2015). Garcinia xanthochymus mediated green synthesis of ZnO nanoparticles: photoluminescence, photocatatlytic and antioxidant studies. Ceramics International, 41, 8680–8687.Google Scholar
  30. 30.
    Prashanth, G. K., Prashanth, P. A., Bora, U., Gadewar, M., Nagabhushana, B. M., Ananda, S., Krishnaiah, G. M., & Sathyananda, H. M. (2015). In vitro antibacterial and cytotoxicity studies of ZnO nanopowders prepared by combustion assisted facile green synthesis. Karbala International Journal of Modern Science, 1, 67–77.Google Scholar
  31. 31.
    Suresh, D., Nethravathi, P. C., Udayabhanu, R. H., Nagabhushana, H., & Sharma, S. C. (2015). Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Materials Science in Semiconductor Processing, 31, 46–454.Google Scholar
  32. 32.
    Srikanth, C., Chakradhar Sridhar, B., & Mathad, R. D. (2015). Characterization and AC conductivity of novel ZnO doped polyvinyl alcohol (PVA) nano-composite films. International Journal of Chemical Physical Science, 2, 78–84.Google Scholar
  33. 33.
    Saravanakumar, A., Peng, M. M., Ganesh, M., Jayaprakash, J., Mohankumar, M., & Jang, H. T. (2016). Low-cost and eco-friendly green synthesis of silver nanoparticles using Prunus japonica (Rosaceae) leaf extract and their antibacterial, antioxidant properties. Artif Cells Nanomed Biotechnol, 1165–1171.Google Scholar
  34. 34.
    Sathishkumar, G., Logeshwaran, V., Sarathbabu, S., Jha, P. K., Jeyaraj, M., Rajkuberan, C., Senthilkumar, N., & Sivaramakrishnan, S. (2017). Green synthesis of magnetic Fe3O4 nanoparticles using Couroupita guianensis Aubl. fruit extract for their antibacterial and cytotoxicity activities. Artificial Cells, Nanomedicine, and Biotechnology. Scholar
  35. 35.
    Singh, H., Juan, D., & Tae-Hoo, Y. (2016). Green and rapid synthesis of silver nanoparticles using Borago officinalis leaf extract: anticancer and antibacterial activities. Artificial Cells, Nanomedicine, and Biotechnology. Scholar
  36. 36.
    Padalia, H., & Chanda, S. (2017). Characterization, antifungal and cytotoxic evaluation of green synthesized zinc oxide nanoparticles using ziziphus nummularia leaf extract. Artificial Cells, Nanomedicine, and Biotechnology. Scholar
  37. 37.
    Prashanth, G. K., Prashanth, P. A., Nagabhushana, B. M., Ananda, S., Krishnaiah, G. M., Nagendra, H. G., Sathyananda, H. M., Rajendra Singh, C., Yogisha, S., Anand, S., & Tejabhiram, Y. (2018). Comparison of anticancer activity of biocompatible ZnO nanoparticles prepared by solution combustion synthesis using aqueous leaf extracts of Abutilon indicum, Melia azedarach and Indigofera tinctoria as biofuels. Artificial Cells, Nanomedicine, and Biotechnology, 46, 968–979.Google Scholar
  38. 38.
    Farnsworth, N. R. (1966). Biological and phytochemical screening of plants. Journal of Pharmaceutical Sciences, 55, 225–276.Google Scholar
  39. 39.
    Harbone, J. B. (1998). Phytochemical methods (pp. 60–66). London: Chapman and Hall.Google Scholar
  40. 40.
    Kokate, C. K. (2000). Practical pharmacognosy (pp. 107–111). Vallabh Prakashan: Delhi.Google Scholar
  41. 41.
    Odland, R. K. (1971). A study of the acetic anhydride method for the determination of citric acid. Master's Theses p. 796.Google Scholar
  42. 42.
    Krishna, P. G., Ananthaswamy, P. P., Gadewar, M., Bora, U., & Nagabhushna, B. M. (2017). In vitro antibacterial and anticancer studies of ZnO nanoparticles prepared by sugar fueled combustion synthesis. Advanced Materials Letters, 8, 24–29.Google Scholar
  43. 43.
    Das, D., Nath, B. C., Phukon, P., Kalita, A., & Dolui, S. K. (2013). Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity. Colloids and Surfaces. B, Biointerfaces, 111, 556–560.Google Scholar
  44. 44.
    Khalid, A., Shahid, S., Khan, S. A., Kanwal, S., Yaqoob, A., Rasool, Z. G., & Rizwan, K. (2018). Antioxidant activity and hepatoprotective effect of Cichorium intybus (Kasni) seed extract against carbon tetrachloride-induced liver toxicity in rats. Tropical Journal of Pharmaceutical Research., 17(8), 1531–1538.Google Scholar
  45. 45.
    Ashraf, I., Zubair, M., Rizwan, K., Rasool, N., Jamil, M., Khan, S. A., Tareen, R. B., Ahmad, V. U., Mahmood, A., Riaz, M., & Zia-Ul-Haq, M. (2018). Chemical composition, antioxidant and antimicrobial potential of essential oils from different parts of Daphne mucronata Royle. Chemistry Central Journal., 12(1), 135.Google Scholar
  46. 46.
    Khan, S. A., Rasool, N., Riaz, M., Nadeem, R., Rashid, U., Rizwan, K., Zubair, M., Bukhari, I. H., & Gulzar, T. (2013). Evaluation of antioxidant and cytotoxicity studies of Clerodendrum inerme. Asian Journal of Chemistry, 13, 7457–7462.Google Scholar
  47. 47.
    Khan, S. A., Kanwal, S., Rizwan, K., & Shahid, S. (2018). Enhanced antimicrobial, antioxidant, in vivo antitumor and in vitro anticancer effects against breast cancer cell line by green synthesized un-doped SnO2 and Co-doped SnO2 nanoparticles from Clerodendrum inerme. Microbial Pathogenesis., 125(C), 366–384.Google Scholar
  48. 48.
    Ahmad, W., Khan, S. A., Munawar, K. S., Khalid, A., & Kawanl, S. (2017). Synthesis, characterization and pharmacological evaluation of mixed ligand-metal complexes containing omeprazole and 8-hydroxyquinoline. Tropical Journal of Pharmaceutical Research., 16(5), 1137–1146.Google Scholar
  49. 49.
    Khan, S. A., Noreen, F., Kanwal, S., Iqbal, A., & Hussain, G. (2017). Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Materials Science and Engineering: C, 82(C), 46–59.Google Scholar
  50. 50.
    Ijaz, F., Shahid, S., Khan, S. A., Ahmad, W., & Zaman, S. (2017). Green synthesis of copper oxide nanoparticles using Abutilon indicum leaf extract: antimicrobial, antioxidant and photocatalytic dye degradation activities. Tropical Journal of Pharmaceutical Research., 16(4), 743–753.Google Scholar
  51. 51.
    Khan, S. A., Ahmad, W., Munawar, K. S., & Kanwal, S. (2018). Synthesis, spectroscopic characterization and biological evaluation of Ni (II), Cu (II) and Zn (II) complexes of diphenyldithiocarbamate. Indian Journal of Pharmaceutical Sciences., 80(3), 480–488.Google Scholar
  52. 52.
    Iqbal, A., Khan, Z. A., Shahzad, S. A., Usman, M., Khan, S. A., Fauq, A. H., Bari, A., & Sajid, M. A. (2018). Synthesis of E-stilbene azomethines as potent antimicrobial and antioxidant agents. Turkish Journal of Chemistry., 42(6), 1518–1533.Google Scholar
  53. 53.
    Khan, S. A., Noreen, F., Kanwal, S., & Hussain, G. (2017). Comparative synthesis, characterization of Cu-doped ZnO nanoparticles and their antioxidant, antibacterial, antifungal and photocatalytic dye degradation activities. Digest Journal of Nanomaterials and Biostructures, 12(3), 877–879.Google Scholar
  54. 54.
    Strober, W. (2001). Trypan blue exclusion test of cell viability. Current Protocols in Immunology.
  55. 55.
    Krishna, P. G., Ananthaswamy, P. P., Yadavalli, T., Mutta, N. B., Sannaiah, A., & Shivanna, Y. (2016). ZnO nanopellets have selective anticancer activity. Materials Science and Engineering: C, 62, 919–926.Google Scholar
  56. 56.
    Prashanth, G. K., Prashanth, P. A., Nagabhushana, B. M., Ananda, S., Nagendra, H. G., & Rajendra Singh, C. (2016). In vitro antimicrobial, antioxidant and anticancer studies of ZnO nanoparticles synthesized by precipitation method. Advanced Science, Engineering and Medicine, 8, 306–313.Google Scholar
  57. 57.
    Bansode, S., & Chavan, M. D. (2012). Studies on antimicrobial activity and phytochemical analysis of citrus fruit juices against selected enteric pathogens. Internationl Research Journal of Pharmacy, 3, 122–126.Google Scholar
  58. 58.
    Mathew, B. B., Jatawa, S. K., & Tiwari, A. (2012). Phytochemical analysis of citrus limonum pulp and peel. International Journal of Pharmacy and Pharmaceutical Sciences, 4, 269–371.Google Scholar
  59. 59.
    Ismail, H. M. (1991). A thermo analytic study of metal acetylacetonates. Journal of Analytical and Applied Pyrolysis, 21, 315–326.Google Scholar
  60. 60.
    Dutta, S., & Bichitra, N. G. (2012). Characterization of ZnO nanoparticles grown in presence of folic acid template. Journal of Nanobiotechnology, 10, 29.Google Scholar
  61. 61.
    Kumar, H., & Rani, R. (2013). Structural and optical characterization of ZnO nanoparticles synthesized by microemulsion route. International Letters of Chemistry, Physics and Astronomy, 14, 26–36.Google Scholar
  62. 62.
    Tauc, J. (1970). Optical properties of solids. Ed. F. Abeles. Amsterdam: North-Holland Publ.Google Scholar
  63. 63.
    Kolekar, T. V., Bandgar, S. S., Shirguppikar, S. S., & Ganachari, V. S. (2013). Synthesis and characterization of ZnO nanoparticles for efficient gas sensors. Archives of Applied Science Research, 5, 20–28.Google Scholar
  64. 64.
    Roy, T. K., Bhowmick, D., Sanyal, D., & Chakrabarti, A. (2008). Sintering studies of nano-crystalline zinc oxide. Ceramics International, 34, 81–87.Google Scholar
  65. 65.
    Hassan, A. A., Howayda, M. E., & Mahmoud, H. H. (2013). Effect of zinc oxide nanoparticles on the growth of mycotoxigenic mould. Studies in Chemical Process Technology, 4, 66–74.Google Scholar
  66. 66.
    Nabway, G. A., Hassan, A. A., & Sayed El-Ahl, R. H. (2014). Effect of metal nanoparticles in comparison with commercial antifungal feed additives on the growth of Aspergillus flavus and Aflatoxin B1 production. Journal of Biosciences, 3, 954–971.Google Scholar
  67. 67.
    Hassan, A. A., Noha, H. O., & El-Dahshan, A. M. A. (2015). Antimicrobial potential of iron oxide nanoparticles in control of some causes of microbial skin affection in cattle. European Journal of Academic Essays, 2, 20–31.Google Scholar
  68. 68.
    Aliaa, E. M., Atef, A. H., Hassan, M. A., El Hariri, M., & Refai, M. (2015). Effect of metal nanoparticles on the growth of ochratoxigenic moulds and ochratoxin A production isolated from food and feed. International Journal of Research Studies in Biosciences (IJRSB), 3, 1–14.Google Scholar
  69. 69.
    Premanathan, M., Karthikeyan, K., Jeyasubramanian, K., & Manivannan, G. (2011). Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine, 7, 184–192.Google Scholar
  70. 70.
    Azam, A., Ahmed, A. S., Oves, M., Khan, M. S., Habib, S. S., & Memic, A. (2012). Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. International Journal of Nanomedicine, 7, 6003–6009.Google Scholar
  71. 71.
    Stoimenov, P. K., Klinger, R. L., Marchin, G. L., & Klabunde, K. J. (2002). Metal oxide nanoparticles as bactericidal agents. Langmuir, 18, 6679–6686.Google Scholar
  72. 72.
    Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M. F., & Fievet, F. (2006). Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Letters, 6, 866–870.Google Scholar
  73. 73.
    Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H. C., & Kahru, A. (2008). Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 71, 1308–1316.Google Scholar
  74. 74.
    Xu, T., & Xie, C. S. (2003). Tetrapod-like nano-particle ZnO/acrylic resin composite and its multi-function property. Progress in Organic Coatings, 46, 297–301.Google Scholar
  75. 75.
    Zhang, L. L., Jiang, Y. H., Ding, Y. L., Povey, M., & York, D. (2007). Investigations into the antibacterial behavior of suspensions of ZnO nanoparticles (ZnO nanofluids). Journal of Nanoparticles, 9, 479–489.Google Scholar
  76. 76.
    Franklin, N. M., Rogers, N. J., Apte, S. C., Batley, G. E., Gadd, G. E., & Casey, P. S. (2007). Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environmental Science & Technology, 41, 8484–8490.Google Scholar
  77. 77.
    Yang, H., Liu, C., Yang, D., & Xi, Z. (2009). Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. Journal of Applied Toxicology, 29, 69–78.Google Scholar
  78. 78.
    Akhavan, O., Mehrabian, M., Mirabbaszadeh, K., & Azimirad, R. (2009). Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria. Journal of Physics D: Applied Physics, 42.Google Scholar
  79. 79.
    Lipovsky, A., Tzitrinovich, Z., Friedmann, H., Applerot, G., Gedanken, A., & Lubart, R. (2009). EPR study of visible light-induced ROS generation by nanoparticles of ZnO. The Journal of Physical Chemistry, 113, 15997–16001.Google Scholar
  80. 80.
    Zhang, L., Ding, Y., Povey, M., & York, D. (2008). ZnO nanofluids - a potential antibacterial agent. Progress in Natural Science, 18, 939–944.Google Scholar
  81. 81.
    Amornpitoksuk, A. P., Suwanboon, S., Sangkanu, S., Sukhoom, A., Wudtipan, J., Srijan, K., & Kaewtaro, S. (2011). Synthesis, photocatalytic and antibacterial activities of ZnO particles modified by diblock copolymer. Powder Technology, 212, 432–438.Google Scholar
  82. 82.
    Vatsha, B., Tetyana, P. L., Shumbula, P. M., Ngila, J. C., Sikhwivhilu, L. M., & Moutloali, R. M. (2013). Effects of precipitation temperature on nanoparticle surface area and antibacterial behavior of Mg(OH)2 and MgO nanoparticles. Journal of Biomedical Nanotechnology, 4, 365–373.Google Scholar
  83. 83.
    Hanley, C., Layne, J., Punnoose, A., Reddy, K. M., Coombs, I., Coombs, A., Feris, K., & Wingett, D. (2008). Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnol, 19, 295103.Google Scholar
  84. 84.
    Carmody, R. J., & Cotter, T. G. (2001). Signaling apoptosis: a radical approach. Redox Report, 6, 77–90.Google Scholar
  85. 85.
    Ryter, S. W., Kim, H. P., Hoetzel, A., Park, J. W., Nakahira, K., Wang, X., et al. (2007). Mechanisms of cell death in oxidative stress. Antioxidants & Redox Signaling, 9, 49–89.Google Scholar
  86. 86.
    Bisht, G., & Rayamajhi, S. (2016). ZnO nanoparticles: a promising anticancer agent. Nanobiomedicine, 3, 9.Google Scholar
  87. 87.
    Manke, A., Wang, L., & Rojanasakul, Y. (2013). Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Research International, 15.Google Scholar
  88. 88.
    Rasmussen, J. W., Martinez, E., Louka, P., & Wingett, D. G. (2010). Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opinion on Drug Delivery, 7, 1063–1077.Google Scholar
  89. 89.
    Wilson, M. R., Lightbody, J. H., Donaldson, K., Sales, J., & Stone, V. (2002). Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicology and Applied Pharmacology, 184, 172–179.Google Scholar
  90. 90.
    Akhtar, M. J., Ahamed, M., Kumar, S., Majeed Khan, M. A., Ahmad, J., & Alrokayan, S. A. (2012). Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. International Journal of Nanomedicine, 7, 845–857.Google Scholar
  91. 91.
    Sherr, C. J. (2004). Principles of tumor suppression. Cell, 11, 235–246.Google Scholar
  92. 92.
    Bakhori, S. K. M., Mahmud, S., Ann, L. C., Mohamed, A. S., Saifuddin, S. N., Masudi, S.'a. M., et al. (2015). Toxicity evaluation of ZnO nanostructures on L929 fibroblast cell line using MTS assay. AIP Conference Proceedings, 1657, 040001.Google Scholar
  93. 93.
    Paino, I. M. M., Gonçalves, F. J., Souza, F. L., & Zucolotto, V. (2016). Zinc oxide flower-like nanostructures that exhibit enhanced toxicology effects in cancer cells. ACS Applied Materials & Interfaces, 8, 32699–32705.Google Scholar
  94. 94.
    Renschler, M. F. (2004). The emerging role of reactive oxygen species in cancer therapy. European Journal of Cancer Therapy, 40, 1934–1940.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Prashanth G. K
    • 1
    • 2
  • Prashanth P. A
    • 2
    • 3
    Email author
  • Meghana Ramani
    • 4
  • Ananda S
    • 5
  • Nagabhushana B. M
    • 6
  • Krishnaiah G. M
    • 1
  • Nagendra H. G
    • 7
  • Sathyananda H. M
    • 1
  • Mutthuraju M
    • 1
  • Rajendra Singh C
    • 7
  1. 1.Department of ChemistrySir M. Visvesvaraya Institute of TechnologyBengaluruIndia
  2. 2.Research and Development CentreBharathiar UniversityCoimbatoreIndia
  3. 3.Department of ChemistryP.E.S College of EngineeringMandyaIndia
  4. 4.Center for Nano Science and Nano Technology, Department of Physics and Nano TechnologySRM UniversityChennaiIndia
  5. 5.Department of ChemistryUniversity of MysoreMysuruIndia
  6. 6.Department of ChemistryM. S. Ramaiah Institute of TechnologyBengaluruIndia
  7. 7.Department of Bio TechnologySir M. Visvesvaraya Institute of TechnologyBengaluruIndia

Personalised recommendations