Advertisement

BioNanoScience

, Volume 9, Issue 4, pp 848–858 | Cite as

Investigation of Conformational Changes of Bovine Serum Albumin upon Binding with Benzocaine Drug: a Spectral and Computational Analysis

  • Mohsen T. A. Qashqoosh
  • Yahiya Kadaf Manea
  • Faiza A. M. Alahdal
  • Saeeda NaqviEmail author
Article
  • 32 Downloads

Abstract

Benzocaine drug (BZC) is an active component of various nonprescription drugs and used for numb teething treatments. The interaction of BZC with bovine serum albumin (BSA) has been studied using fluorescence, synchronous fluorescence, UV-Vis, circular dichroism (CD), and molecular docking analysis. The results revealed that BZC has a strong affinity to quench the intrinsic fluorescence of BSA in terms of a static quenching mechanism under physiological conditions. The fluorescence quenching data revealed that the quenching constants are (KSV) 4.10, 3.30, and 2.35 × 104 L mol−1 at 298, 304, and 310 K, respectively. The binding constants (Kb) at three different temperatures (298, 304, and 310 K) were found to be 6.02, 3.72, and 1.10 × 105 L mol−1, respectively. The thermodynamic parameters ∆H° and ∆S° have been estimated to be − 70.67 and − 128.9 J mol−1 K−1, respectively, thereby, indicating that hydrogen bonding and Van der Waals forces play major role in the interaction of BSA–BZC. Moreover, the negative values of ΔG° − 32.30, − 31.50, − 30.68 kJ mol−1 at 298, 304, 310 K, respectively, indicate the spontaneity of the interaction. FRET analysis proved high probability of energy transfer from BSA to the drug molecule. Molecular docking and displacement studies indicated that BZC was bound to the Sudlow’s site II through hydrogen bonding and Van der Waals interactions.

Keywords

Benzocaine Bovine serum albumin Spectral studies Molecular docking 

Notes

Acknowledgments

The authors are grateful to the Interdisciplinary Biotechnology Unit, Aligarh Muslim University, India for supporting this work.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Funding Information

One of the authors Mohsen Qashqoosh received financial assistance from University Grant Commission, India.

References

  1. 1.
    Zhang, Q., & Ni, Y. (2017). Comparative studies on the interaction of nitrofuran antibiotics with bovine serum albumin †.  https://doi.org/10.1039/c7ra05570f.CrossRefGoogle Scholar
  2. 2.
    Molodenskiy, D., Shirshin, E., Tikhonova, T., Gruzinov, A., Peters, G., & Spinozzi, F. (2017). Thermally induced conformational changes and protein–protein interactions of bovine serum albumin in aqueous solution under different pH and ionic strengths as revealed by SAXS measurements. Physical Chemistry Chemical Physics, 19(26), 17143–17155.  https://doi.org/10.1039/C6CP08809K.CrossRefGoogle Scholar
  3. 3.
    Liu, J., He, Y., Liu, D., He, Y., Tang, Z., Lou, H., et al. (2018). Characterizing the binding interaction of astilbin with bovine serum albumin: A spectroscopic study in combination with molecular docking technology. RSC Advances, 8(13), 7280–7286.  https://doi.org/10.1039/C7RA13272G.CrossRefGoogle Scholar
  4. 4.
    Ghuman, J., Zunszain, P. A., Petitpas, I., Bhattacharya, A. A., Otagiri, M., & Curry, S. (2005). Structural basis of the drug-binding specificity of human serum albumin. Journal of Molecular Biology, 353(1), 38–52.  https://doi.org/10.1016/J.JMB.2005.07.075.CrossRefGoogle Scholar
  5. 5.
    Zhivkova, Z. D. (n.d.). Studies on Drug – Human Serum Albumin Binding: The Current State of the Matter. Retrieved from https://www.ingentaconnect.com/content/ben/cpd/2015/00000021/00000014/art00005
  6. 6.
    Manea, Y. K., Khan, A. M. T., Qashqoosh, M., Wani, A. A., & Shahadat, M. (2019). Ciprofloxacin-supported chitosan/polyphosphate nanocomposite to bind bovine serum albumin: Its application in drug delivery. Journal of Molecular Liquids, 111337.  https://doi.org/10.1016/J.MOLLIQ.2019.111337.CrossRefGoogle Scholar
  7. 7.
    Lou, Y.-Y., Zhou, K.-L., Pan, D.-Q., Shen, J.-L., & Shi, J.-H. (2017). Spectroscopic and molecular docking approaches for investigating conformation and binding characteristics of clonazepam with bovine serum albumin (BSA). Journal of Photochemistry and Photobiology B: Biology, 167, 158–167.  https://doi.org/10.1016/J.JPHOTOBIOL.2016.12.029.CrossRefGoogle Scholar
  8. 8.
    Shi, J.-H., Zhou, K.-L., Lou, Y.-Y., & Pan, D.-Q. (2018). Multi-spectroscopic and molecular modeling approaches to elucidate the binding interaction between bovine serum albumin and darunavir, a HIV protease inhibitor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 188, 362–371.  https://doi.org/10.1016/J.SAA.2017.07.040.CrossRefGoogle Scholar
  9. 9.
    Zhou, N., Liang, Y.-Z., & Wang, P. (2007). 18β-Glycyrrhetinic acid interaction with bovine serum albumin. Journal of Photochemistry and Photobiology A: Chemistry, 185(2–3), 271–276.  https://doi.org/10.1016/J.JPHOTOCHEM.2006.06.019.CrossRefGoogle Scholar
  10. 10.
    Yang, F., Zhang, Y., Liang, H., Yang, F., Zhang, Y., & Liang, H. (2014). Interactive Association of Drugs Binding to human serum albumin. International Journal of Molecular Sciences, 15(3), 3580–3595.  https://doi.org/10.3390/ijms15033580.CrossRefGoogle Scholar
  11. 11.
    Mangiapia, G., Gvaramia, M., Kuhrts, L., Teixeira, J., Koutsioubas, A., Soltwedel, O., & Frielinghaus, H. (2017). Effect of benzocaine and propranolol on phospholipid-based bilayers. Physical Chemistry Chemical Physics, 19(47), 32057–32071.  https://doi.org/10.1039/C7CP06077G.CrossRefGoogle Scholar
  12. 12.
    Mura, P., Maestrelli, F., González-Rodríguez, M. L., Michelacci, I., Ghelardini, C., & Rabasco, A. M. (2007). Development, characterization and in vivo evaluation of benzocaine-loaded liposomes. European Journal of Pharmaceutics and Biopharmaceutics, 67(1), 86–95.  https://doi.org/10.1016/J.EJPB.2007.01.020.CrossRefGoogle Scholar
  13. 13.
    Li, S., & Li, D. (2011). Investigation on the pH-dependent binding of benzocaine and lysozyme by fluorescence and absorbance. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 82(1), 396–405.  https://doi.org/10.1016/J.SAA.2011.07.069.CrossRefGoogle Scholar
  14. 14.
    Zhang, H., Mei, P., & Yang, X. (2009). Optical, structural and thermodynamic properties of the interaction between tradimefon and serum albumin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 72(3), 621–626.  https://doi.org/10.1016/J.SAA.2008.10.062.CrossRefGoogle Scholar
  15. 15.
    Chinnathambi, S., Velmurugan, D., Hanagata, N., Aruna, P. R., & Ganesan, S. (2014). Investigations on the interactions of 5-fluorouracil with bovine serum albumin: Optical spectroscopic and molecular modeling studies. Journal of Luminescence, 151, 1–10.  https://doi.org/10.1016/J.JLUMIN.2014.01.063.CrossRefGoogle Scholar
  16. 16.
    Silva, D., Cortez, C. M., Cunha-Bastos, J., & Louro, S. R. (2004). Methyl parathion interaction with human and bovine serum albumin. Toxicology Letters, 147(1), 53–61.  https://doi.org/10.1016/J.TOXLET.2003.10.014.CrossRefGoogle Scholar
  17. 17.
    Ghisaidoobe, A. B. T., & Chung, S. J. (2014). Intrinsic tryptophan fluorescence in the detection and analysis of proteins: A focus on Förster resonance energy transfer techniques. International Journal of Molecular Sciences, 15(12), 22518–22538.  https://doi.org/10.3390/ijms151222518.CrossRefGoogle Scholar
  18. 18.
    Zhang, G., Que, Q., Pan, J., & Guo, J. (2008). Study of the interaction between icariin and human serum albumin by fluorescence spectroscopy. Journal of Molecular Structure, 881(1–3), 132–138.  https://doi.org/10.1016/J.MOLSTRUC.2007.09.002.CrossRefGoogle Scholar
  19. 19.
    Shen, H., Gu, Z., Jian, K., & Qi, J. (2013). In vitro study on the binding of gemcitabine to bovine serum albumin. Journal of Pharmaceutical and Biomedical Analysis, 75, 86–93.  https://doi.org/10.1016/J.JPBA.2012.11.021.CrossRefGoogle Scholar
  20. 20.
    Jana, S., Dalapati, S., Ghosh, S., & Guchhait, N. (2012). Binding interaction between plasma protein bovine serum albumin and flexible charge transfer fluorophore: a spectroscopic study in combination with molecular docking and molecular dynamics simulation. Journal of Photochemistry and Photobiology A: Chemistry, 231(1), 19–27.  https://doi.org/10.1016/J.JPHOTOCHEM.2011.12.002.CrossRefGoogle Scholar
  21. 21.
    Akdogan, Y., Emrullahoglu, M., Tatlidil, D., Ucuncu, M., & Cakan-Akdogan, G. (2016). EPR studies of intermolecular interactions and competitive binding of drugs in a drug–BSA binding model. Physical Chemistry Chemical Physics, 18(32), 22531–22539.  https://doi.org/10.1039/C6CP04137J.CrossRefGoogle Scholar
  22. 22.
    Shaikh, S. M. T., Seetharamappa, J., Ashoka, S., & Kandagal, P. B. (2006). Spectroscopic studies and life time measurements of binding of a bioactive compound to bovine serum albumin and the effects of common ions and other drugs on binding. Chemical & Pharmaceutical Bulletin, 54(4), 422–427.  https://doi.org/10.1248/cpb.54.422.CrossRefGoogle Scholar
  23. 23.
    Peng, X., Qi, W., Huang, R., Su, R., & He, Z. (2015). Elucidating the influence of gold nanoparticles on the binding of salvianolic acid B and rosmarinic acid to bovine serum albumin. PLoS One, 10(4), e0118274.  https://doi.org/10.1371/journal.pone.0118274.CrossRefGoogle Scholar
  24. 24.
    Hu, Y.-J., Liu, Y., Zhao, R.-M., Dong, J.-X., & Qu, S.-S. (2006). Spectroscopic studies on the interaction between methylene blue and bovine serum albumin. Journal of Photochemistry and Photobiology A: Chemistry, 179(3), 324–329.  https://doi.org/10.1016/J.JPHOTOCHEM.2005.08.037.CrossRefGoogle Scholar
  25. 25.
    Becker, D. E., & Reed, K. L. (2012). Local anesthetics: review of pharmacological considerations. Anesthesia Progress, 59(2), 90–101; quiz 102–3.  https://doi.org/10.2344/0003-3006-59.2.90.CrossRefGoogle Scholar
  26. 26.
    Lakowicz, J. R., & Masters, B. R. (2008). Principles of fluorescence spectroscopy, third edition. Journal of Biomedical Optics, 13(2), 029901.  https://doi.org/10.1117/1.2904580.CrossRefGoogle Scholar
  27. 27.
    Athina Papadopoulou, Rebecca J. Green, , & Richard A. Frazier. (2004). Interaction of flavonoids with bovine serum albumin: a fluorescence quenching study. doi: https://doi.org/10.1021/JF048693G.CrossRefGoogle Scholar
  28. 28.
    Zhang, G., Wang, A., Jiang, T., & Guo, J. (2008). Interaction of the irisflorentin with bovine serum albumin: a fluorescence quenching study. Journal of Molecular Structure, 891(1–3), 93–97.  https://doi.org/10.1016/J.MOLSTRUC.2008.03.002.CrossRefGoogle Scholar
  29. 29.
    Khan, A. B., Khan, J. M., Ali, M. S., Khan, R. H., & Kabir-ud-Din. (2012). Interaction of amphiphilic drugs with human and bovine serum albumins. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97, 119–124.  https://doi.org/10.1016/J.SAA.2012.05.060.CrossRefGoogle Scholar
  30. 30.
    Amaral, M., Kokh, D. B., Bomke, J., Wegener, A., Buchstaller, H. P., Eggenweiler, H. M., et al. (2017). Protein conformational flexibility modulates kinetics and thermodynamics of drug binding. Nature Communications, 8(1), 2276.  https://doi.org/10.1038/s41467-017-02258-w.CrossRefGoogle Scholar
  31. 31.
    Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry, 20(11), 3096–3102.  https://doi.org/10.1021/bi00514a017.CrossRefGoogle Scholar
  32. 32.
    Yasseen, Z., & Omar El-Ghossain, M. (2016). Studies on binding of widely used drugs with human serum albumin at different temperatures and PHs radiation measurements in the environment view project a Flureescence quenching studies of drugs binding with human serum albumin view project.  https://doi.org/10.4172/2254-609X.100033.CrossRefGoogle Scholar
  33. 33.
    Zhao, X., Liu, R., Teng, Y., & Liu, X. (2011). The interaction between ag+ and bovine serum albumin: A spectroscopic investigation. Science of the Total Environment, 409(5), 892–897.  https://doi.org/10.1016/J.SCITOTENV.2010.11.004.CrossRefGoogle Scholar
  34. 34.
    Samari, F., Hemmateenejad, B., Rezaei, Z., & Shamsipur, M. (2012). A novel approach for rapid determination of vitamin B12 in pharmaceutical preparations using BSA-modified gold nanoclusters. Analytical Methods, 4(12), 4155.  https://doi.org/10.1039/c2ay25196e.CrossRefGoogle Scholar
  35. 35.
    Ahmad, B., Parveen, S., & Khan, R. H. (2006). Effect of albumin conformation on the binding of ciprofloxacin to human serum albumin: a novel approach directly assigning binding site.  https://doi.org/10.1021/BM050996B.CrossRefGoogle Scholar
  36. 36.
    Liu, X.-H., Xi, P.-X., Chen, F.-J., Xu, Z.-H., & Zeng, Z.-Z. (2008). Spectroscopic studies on binding of 1-phenyl-3-(coumarin-6-yl)sulfonylurea to bovine serum albumin. Journal of Photochemistry and Photobiology B: Biology, 92(2), 98–102.  https://doi.org/10.1016/J.JPHOTOBIOL.2008.04.008.CrossRefGoogle Scholar
  37. 37.
    Hu, Y.-J., Liu, Y., Shen, X.-S., Fang, X.-Y., & Qu, S.-S. (2005). Studies on the interaction between 1-hexylcarbamoyl-5-fluorouracil and bovine serum albumin. Journal of Molecular Structure, 738(1–3), 143–147. doi: https://doi.org/10.1016/J.MOLSTRUC.2004.11.062.CrossRefGoogle Scholar
  38. 38.
    Sudlow, G., Birkett, D. J., & Wade, D. N. (1976). Further characterization of specific drug binding sites on human serum albumin. Molecular Pharmacology, 12(6).Google Scholar
  39. 39.
    Yamasaki, K., Maruyama, T., Kragh-Hansen, U., & Otagiri, M. (1996). Characterization of site I on human serum albumin: concept about the structure of a drug binding site. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1295(2), 147–157.  https://doi.org/10.1016/0167-4838(96)00013-1.CrossRefGoogle Scholar
  40. 40.
    Huang, B. X., Kim, H.-Y., & Dass, C. (2004). Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry. Journal of the American Society for Mass Spectrometry, 15(8), 1237–1247.  https://doi.org/10.1016/j.jasms.2004.05.004.CrossRefGoogle Scholar
  41. 41.
    Cheng, Z., & Zhang, Y. (2008). Fluorometric investigation on the interaction of oleanolic acid with bovine serum albumin. Journal of Molecular Structure, 879(1–3), 81–87.  https://doi.org/10.1016/J.MOLSTRUC.2007.08.020.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mohsen T. A. Qashqoosh
    • 1
  • Yahiya Kadaf Manea
    • 1
  • Faiza A. M. Alahdal
    • 1
  • Saeeda Naqvi
    • 1
    Email author
  1. 1.Department of ChemistryAligarh Muslim UniversityAligarhIndia

Personalised recommendations