Advertisement

BioNanoScience

, Volume 9, Issue 4, pp 966–976 | Cite as

Visualization of Blood Flow in AAA Patient-Specific Geometry: 3-D Reconstruction and Simulation Procedures

  • Yousif A. Algabri
  • Omar Altwijri
  • Surapong ChatpunEmail author
Article
  • 69 Downloads

Abstract

Abdominal aortic aneurysm (AAA) is a life-threatening disease when the diameter exceeds its safety margin or the aortic wall reaches its mechanical strength. Both of these potential problems need to be clinically assessed. The geometrical influence on blood flow behavior and hemodynamic changes of AAA are not fully clinically understood. The study aimed to explore creating comprehensive and detailed models for use in reconstruction, modeling, and simulating three-dimensional (3D) patient-specific geometry based on two-dimensional (2D) computed tomography images. The patient information was extracted from computed tomography images and the AAA patient’s database. The 3D geometrical models were created using MIMICS software segmentation tools and exported in STL files to ANSYS Workbench. Computational fluid dynamics (CFD) and finite volume methods were used to solve Navier-Stokes equations for fluid flow in the 3D domain. Blood was treated as incompressible and Newtonian fluid, and a transient flow with a time-dependent velocity waveform assigned at the inlet boundary. The computational results were visualized using ANSYS Fluent post-processing. The CFD transient simulation results are presented using the hemodynamic parameters, including velocity vectors, flow patterns (streamlines), pressure distribution, and wall shear stress. The demonstrated results are part of the study aims and methods in order to provide detailed approaches of computational analysis. The procedures used in this study would be useful for understanding the biomechanical influence on blood flow and hemodynamics.

Keywords

Abdominal aortic aneurysm 3D patient-specific geometry Computed tomography Computational fluid dynamics Finite volume method 

Notes

Acknowledgments

Gratitude is expressed to the International Affairs office, Faculty of Medicine, Prince of Songkla University, for their assistant with manuscript proofreading and editing. We acknowledge also the technical support from Sorracha Rookkapan, MD on behalf of the Radiology Department, Prince of Songkla University.

Funding Information

This work was funded by the TEH-AC scholarship and dissertation support funds from the Graduate School, Prince of Songkla University.

Compliance with Ethical Standards

Conflict of Interest

None.

Research Involving Humans and Animals Statement

This study did not involve human participants or animals. The images used in this work were under the ethical approval acquired from the Faculty of Medicine Ethics Committee, Prince of Songkla University, under number REC.61-010-25-2.

Informed Consent

None.

Supplementary material

12668_2019_662_MOESM1_ESM.docx (2.1 mb)
ESM 1 (DOCX 2148 kb)

References

  1. 1.
    Townsend, N., Wilson, L., Bhatnagar, P., Wickramasinghe, K., Rayner, M., & Nichols, M. (2016). Cardiovascular disease in Europe: epidemiological update 2016. European Heart Journal, 37(42), 3232–3245.  https://doi.org/10.1093/eurheartj/ehw334.CrossRefGoogle Scholar
  2. 2.
    Chamberlain, J. J., Johnson, E. L., Leal, S., Rhinehart, A. S., Shubrook, J. H., & Peterson, L. (2018). Cardiovascular disease and risk management: review of the American Diabetes Association Standards of Medical Care in Diabetes 2018. Annals of Internal Medicine, 168(9), 640–650.  https://doi.org/10.7326/M18-0222.CrossRefGoogle Scholar
  3. 3.
    Barquera, S., Pedroza-Tobías, A., Medina, C., Hernández-Barrera, L., Bibbins-Domingo, K., Lozano, R., & Moran, A. E. (2015). Global overview of the epidemiology of atherosclerotic cardiovascular disease. Archives of Medical Research, 46(5), 328–338.  https://doi.org/10.1016/j.arcmed.2015.06.006.CrossRefGoogle Scholar
  4. 4.
    Humphrey, J. D., & Holzapfel, G. A. (2012). Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. Journal of Biomechanics, 45(5), 805–814.  https://doi.org/10.1016/j.jbiomech.2011.11.021.CrossRefGoogle Scholar
  5. 5.
    Wang, D. H. J., Makaroun, M. S., Webster, M. W., & Vorp, D. A. (2002). Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. Journal of Vascular Surgery, 36(3), 598–604.  https://doi.org/10.1067/mva.2002.126087.CrossRefGoogle Scholar
  6. 6.
    Aggarwal, S., Qamar, A., Sharma, V., & Sharma, A. (2011). Abdominal aortic aneurysm: a comprehensive review. Experimental and Clinical Cardiology, 16(1), 11–15.Google Scholar
  7. 7.
    Souayeh, B., Reddy, M. G., Sreenivasulu, P., Poornima, T., Rahimi-Gorji, M., & Alarifi, I. M. (2019). Comparative analysis on non-linear radiative heat transfer on MHD Casson nanofluid past a thin needle. Journal of Molecular Liquids, 284, 163–174.  https://doi.org/10.1016/j.molliq.2019.03.151.CrossRefGoogle Scholar
  8. 8.
    Algabri, Y. A., Rookkapan, S., Gramigna, V., Espino, D. M., & Chatpun, S. (2019). Computational study on hemodynamic changes in patient-specific proximal neck angulation of abdominal aortic aneurysm with time-varying velocity. Australasian Physical & Engineering Sciences in Medicine, 42(1), 181–190.  https://doi.org/10.1007/s13246-019-00728-7.CrossRefGoogle Scholar
  9. 9.
    Moll, F. L. L., Powell, J. T. T., Fraedrich, G., Verzini, F., Haulon, S., Waltham, M., et al. (2011). Management of abdominal aortic aneurysms clinical practice guidelines of the European society for vascular surgery. European Journal of Vascular and Endovascular Surgery, 41(SUPPL. 1), S1–S58.  https://doi.org/10.1016/j.ejvs.2010.09.011.CrossRefGoogle Scholar
  10. 10.
    Shum, J., Dimartino, E. S., Goldhammer, A., Goldman, D. H., Acker, L. C., Patel, G., et al. (2010). Semiautomatic vessel wall detection and quantification of wall thickness in computed tomography images of human abdominal aortic aneurysms. Medical Physics, 37(2), 638–648.  https://doi.org/10.1118/1.3284976.CrossRefGoogle Scholar
  11. 11.
    Owen, B., Lowe, C., Ashton, N., Mandal, P., Rogers, S., Wein, W., et al. (2016). Computational hemodynamics of abdominal aortic aneurysms: three-dimensional ultrasound versus computed tomography. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 230(3), 201–210.  https://doi.org/10.1177/0954411915626742.CrossRefGoogle Scholar
  12. 12.
    Myers, K., Devine, T., Barras, C., & Self, G. (2011). Endoluminal versus open repair for abdominal aortic aneurysms. 2nd Virtual Congress of Cardiology. Retrieved December 12, 2017, from http://www.fac.org.ar/scvc/llave/interven/myers/myersi.htm
  13. 13.
    Arzani, A., Suh, G. Y., Dalman, R. L., & Shadden, S. C. (2014). A longitudinal comparison of hemodynamics and intraluminal thrombus deposition in abdominal aortic aneurysms. American Journal of Physiology. Heart and Circulatory Physiology, 307(12), H1786–H1795.  https://doi.org/10.1152/ajpheart.00461.2014.CrossRefGoogle Scholar
  14. 14.
    Canchi, T., Saxena, A., Ng, E., Pwee, E. C., & Narayanan, S. (2018). Application of fluid–structure interaction methods to estimate the mechanics of rupture in Asian abdominal aortic aneurysms. BioNanoScience, 8(4), 1035–1044.  https://doi.org/10.1007/s12668-018-0554-z.CrossRefGoogle Scholar
  15. 15.
    Roy, D., Kauffmann, C., Delorme, S., Lerouge, S., Cloutier, G., & Soulez, G. (2012). A literature review of the numerical analysis of abdominal aortic aneurysms treated with endovascular stent grafts. Computational and Mathematical Methods in Medicine, 2012, 1–16.  https://doi.org/10.1155/2012/820389.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Erhart, P., Roy, J., De Vries, J. P. P. M., Liljeqvist, M. L., Grond-Ginsbach, C., Hyhlik-Dürr, A., & Böckler, D. (2016). Prediction of rupture sites in abdominal aortic aneurysms after finite element analysis. Journal of Endovascular Therapy, 23(1), 115–120.  https://doi.org/10.1177/1526602815612196.CrossRefGoogle Scholar
  17. 17.
    Lindquist Liljeqvist, M., Hultgren, R., Siika, A., Gasser, T. C., & Roy, J. (2017). Gender, smoking, body size, and aneurysm geometry influence the biomechanical rupture risk of abdominal aortic aneurysms as estimated by finite element analysis. Journal of Vascular Surgery, 65(4), 1014–1021.  https://doi.org/10.1016/j.jvs.2016.10.074.CrossRefGoogle Scholar
  18. 18.
    Rahimi-Gorji, M., Pourmehran, O., Gorji-Bandpy, M., & Gorji, T. B. (2015). CFD simulation of airflow behavior and particle transport and deposition in different breathing conditions through the realistic model of human airways. Journal of Molecular Liquids, 209, 121–133.  https://doi.org/10.1016/j.molliq.2015.05.031.CrossRefGoogle Scholar
  19. 19.
    Carty, G., Chatpun, S., & Espino, D. M. (2016). Modeling blood flow through intracranial aneurysms: a comparison of Newtonian and non-Newtonian viscosity. Journal of Medical and Biological Engineering, 36(3), 396–409.  https://doi.org/10.1007/s40846-016-0142-z.CrossRefGoogle Scholar
  20. 20.
    Rahimi-Gorji, M., Gorji, T. B., & Gorji-Bandpy, M. (2016). Details of regional particle deposition and airflow structures in a realistic model of human tracheobronchial airways: two-phase flow simulation. Computers in Biology and Medicine, 74, 1–17.  https://doi.org/10.1016/j.compbiomed.2016.04.017.CrossRefGoogle Scholar
  21. 21.
    Wang, Y., Joannic, D., Juillion, P., Monnet, A., Delassus, P., Lalande, A., & Fontaine, J. F. (2018). Validation of the strain assessment of a phantom of abdominal aortic aneurysm: comparison of results obtained from magnetic resonance imaging and stereovision measurements. Journal of Biomechanical Engineering, 140(3), 031001.  https://doi.org/10.1115/1.4038743.CrossRefGoogle Scholar
  22. 22.
    Picel, A. C., & Kansal, N. (2014). Essentials of endovascular abdominal aortic aneurysm repair imaging: postprocedure surveillance and complications. American Journal of Roentgenology, 203(4), W358–W372.  https://doi.org/10.2214/AJR.13.11736.CrossRefGoogle Scholar
  23. 23.
    Van Der Vliet, J. A., Schultze Kool, L. J., & Van Hoek, F. (2011). Simplifying post-EVAR surveillance. European Journal of Vascular and Endovascular Surgery, 42(2), 193–194.  https://doi.org/10.1016/j.ejvs.2011.04.012.CrossRefGoogle Scholar
  24. 24.
    Algabri, Y. A., Chatpun, S., & Taib, I. (2019). An investigation of pulsatile blood flow in an angulated neck of abdominal aortic aneurysm using computational fluid dynamics. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 57(2), 265–274.Google Scholar
  25. 25.
    Ford, M. D., Stuhne, G. R., Nikolov, H. N., Habets, D. F., Lownie, S. P., Holdsworth, D. W., & Steinman, D. A. (2005). Virtual angiography for visualization and validation of computational models of aneurysm hemodynamics. IEEE Transactions on Medical Imaging, 24(12), 1586–1592.  https://doi.org/10.1109/TMI.2005.859204.CrossRefGoogle Scholar
  26. 26.
    Satoh, T., Onoda, K., & Tsuchimoto, S. (2003). Visualization of intraaneurysmal flow patterns with transluminal flow images of 3D MR angiograms in conjunction with aneurysmal configurations. American Journal of Neuroradiology, 24(7), 1436–1445.Google Scholar
  27. 27.
    Morris, P. D., Narracott, A., von Tengg-Kobligk, H., Soto, D. A. S., Hsiao, S., Lungu, A., et al. (2016). Computational fluid dynamics modelling in cardiovascular medicine. Heart, 102(1), 18–28.  https://doi.org/10.1136/heartjnl-2015-308044.CrossRefGoogle Scholar
  28. 28.
    Lee, B. K. (2011). Computational fluid dynamics in cardiovascular disease. Korean Circulation Journal, 41(8), 423.  https://doi.org/10.4070/kcj.2011.41.8.423.CrossRefGoogle Scholar
  29. 29.
    Tseng, F. S., Soong, T. K., Syn, N., Ong, C. W., Liangb, L. H., & Choongc, A. M. T. L. (2017). Computational fluid dynamics in complex aortic surgery: applications, prospects and challenges. Journal of Surgical Simulation, 4, 1–4.  https://doi.org/10.1102/2051-7726.2017.0001.CrossRefGoogle Scholar
  30. 30.
    van Bakel, T. M. J., Lau, K. D., Hirsch-Romano, J., Trimarchi, S., Dorfman, A. L., & Figueroa, C. A. (2018). Patient-specific modeling of hemodynamics: supporting surgical planning in a Fontan circulation correction. Journal of Cardiovascular Translational Research, 11(2), 145–155.  https://doi.org/10.1007/s12265-017-9781-x.CrossRefGoogle Scholar
  31. 31.
    Algabri, Y. A., Rookkapan, S., & Chatpun, S. (2017). Three-dimensional finite volume modelling of blood flow in simulated angular neck abdominal aortic aneurysm. IOP Conference Series: Materials Science and Engineering, 243(1), 012003.  https://doi.org/10.1088/1757-899X/243/1/012003.CrossRefGoogle Scholar
  32. 32.
    ChungDann Kan, T. C. (2014). Numerical simulation of blood flow in double-barreled Cannon EVAR and its clinical validation. Journal of Vascular Medicine & Surgery, 02(04), 1000160.  https://doi.org/10.4172/2329-6925.1000160.CrossRefGoogle Scholar
  33. 33.
    Olufsen, M. S., Peskin, C. S., Kim, W. Y., Pedersen, E. M., Nadim, A., & Larsen, J. (2000). Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Annals of Biomedical Engineering, 28(11), 1281–1299.  https://doi.org/10.1114/1.1326031.CrossRefGoogle Scholar
  34. 34.
    Joly, F., Soulez, G., Garcia, D., Lessard, S., & Kauffmann, C. (2018). Flow stagnation volume and abdominal aortic aneurysm growth: insights from patient-specific computational flow dynamics of Lagrangian-coherent structures. Computers in Biology and Medicine, 92, 98–109.  https://doi.org/10.1016/j.compbiomed.2017.10.033.CrossRefGoogle Scholar
  35. 35.
    Tong, J., Cohnert, T., Regitnig, P., & Holzapfel, G. A. (2011). Effects of age on the elastic properties of the intraluminal thrombus and the thrombus-covered wall in abdominal aortic aneurysms: biaxial extension behaviour and material modelling. European Journal of Vascular and Endovascular Surgery, 42(2), 207–219.  https://doi.org/10.1016/j.ejvs.2011.02.017.CrossRefGoogle Scholar
  36. 36.
    Xu, P., Liu, X., Song, Q., Chen, G., Wang, D., Zhang, H., et al. (2016). Patient-specific structural effects on hemodynamics in the ischemic lower limb artery. Scientific Reports, 6(1), 39225.  https://doi.org/10.1038/srep39225.CrossRefGoogle Scholar
  37. 37.
    Rissland, P., Alemu, Y., Einav, S., Ricotta, J., & Bluestein, D. (2009). Abdominal aortic aneurysm risk of rupture: patient-specific FSI simulations using anisotropic model. Journal of Biomechanical Engineering, 131(3), 031001.  https://doi.org/10.1115/1.3005200.CrossRefGoogle Scholar
  38. 38.
    Scotti, C. M., & Finol, E. A. (2007). Compliant biomechanics of abdominal aortic aneurysms: a fluid-structure interaction study. Computers and Structures, 85(11–14), 1097–1113.  https://doi.org/10.1016/j.compstruc.2006.08.041.CrossRefGoogle Scholar
  39. 39.
    Frauenfelder, T., Lotfey, M., Boehm, T., & Wildermuth, S. (2006). Computational fluid dynamics: hemodynamic changes in abdominal aortic aneurysm after stent-graft implantation. Cardiovascular and Interventional Radiology, 29(4), 613–623.  https://doi.org/10.1007/s00270-005-0227-5.CrossRefGoogle Scholar
  40. 40.
    Krishna, C. M., ViswanathaReddy, G., Souayeh, B., Raju, C. S. K., Rahimi-Gorji, M., & Raju, S. S. K. (2019). Thermal convection of MHD Blasius and Sakiadis flow with thermal convective conditions and variable properties. Microsystem Technologies, 1–12.  https://doi.org/10.1007/s00542-019-04353-y.CrossRefGoogle Scholar
  41. 41.
    Chaichana, T., Sun, Z., & Jewkes, J. (2012). Investigation of the haemodynamic environment of bifurcation plaques within the left coronary artery in realistic patient models based on CT images. Australasian Physical & Engineering Sciences in Medicine, 35(2), 231–236.  https://doi.org/10.1007/s13246-012-0135-3.CrossRefGoogle Scholar
  42. 42.
    Yeow, S. L., & Leo, H. L. (2016). Hemodynamic study of flow remodeling stent graft for the treatment of highly angulated abdominal aortic aneurysm. Computational and Mathematical Methods in Medicine, 2016, 1–10.  https://doi.org/10.1155/2016/3830123.CrossRefGoogle Scholar
  43. 43.
    Canchi, T., Kumar, S. D., Ng, E. Y. K., & Narayanan, S. (2015). A review of computational methods to predict the risk of rupture of abdominal aortic aneurysms. BioMed Research International, 2015, 1–12.  https://doi.org/10.1155/2015/861627.CrossRefGoogle Scholar
  44. 44.
    Stefanov, F., McGloughlin, T., & Morris, L. (2016). A computational assessment of the hemodynamic effects of crossed and non-crossed bifurcated stent-graft devices for the treatment of abdominal aortic aneurysms. Medical Engineering and Physics, 38(12), 1458–1473.  https://doi.org/10.1016/j.medengphy.2016.09.011.CrossRefGoogle Scholar
  45. 45.
    Morris, L., Delassus, P., Walsh, M., & McGloughlin, T. (2004). A mathematical model to predict the in vivo pulsatile drag forces acting on bifurcated stent grafts used in endovascular treatment of abdominal aortic aneurysms (AAA). Journal of Biomechanics, 37(7), 1087–1095.  https://doi.org/10.1016/j.jbiomech.2003.11.014.CrossRefGoogle Scholar
  46. 46.
    Gur, H. Ben Brand, M., Kósa, G., & Golan, S. (2017). Computational fluid dynamics of blood flow in the abdominal aorta post “Chimney” endovascular aneurysm repair (ChEVAR) In Aortic Aneurysm (p. 171). IntechOpen. doi: https://doi.org/10.5772/67011.Google Scholar
  47. 47.
    Shek, T. L. T., Tse, L. W., Nabovati, A., & Amon, C. H. (2012). Computational fluid dynamics evaluation of the cross-limb stent graft configuration for endovascular aneurysm repair. Journal of Biomechanical Engineering, 134(12), 121002.  https://doi.org/10.1115/1.4007950.CrossRefGoogle Scholar
  48. 48.
    Drewe, C. J., Parker, L. P., Kelsey, L. J., Norman, P. E., Powell, J. T., & Doyle, B. J. (2017). Haemodynamics and stresses in abdominal aortic aneurysms: a fluid-structure interaction study into the effect of proximal neck and iliac bifurcation angle. Journal of Biomechanics, 60, 150–156.  https://doi.org/10.1016/j.jbiomech.2017.06.029.CrossRefGoogle Scholar
  49. 49.
    Xenos, M., Alemu, Y., Zamfir, D., Einav, S., Ricotta, J. J., Labropoulos, N., et al. (2010). The effect of angulation in abdominal aortic aneurysms: fluid-structure interaction simulations of idealized geometries. Medical and Biological Engineering and Computing, 48(12), 1175–1190.  https://doi.org/10.1007/s11517-010-0714-y.CrossRefGoogle Scholar
  50. 50.
    Sinnott, M., Cleary, P. W., & Prakash, M. (2006). An investigation of pulsatile blood flow in a bifurcation artery using a grid-free method. In Proc. Fifth International Conference on CFD in the Process Industries (pp. 1–6). Melbourne. doi: https://doi.org/10.1115/1.4025111.
  51. 51.
    Gounley, J., Vardhan, M., & Randles, A. (2017). A computational framework to assess the influence of changes in vascular geometry on blood flow. In Proceedings of the Platform for Advanced Scientific Computing Conference on - PASC ’17 (pp. 1–8). Lugano. doi: https://doi.org/10.1145/3093172.3093227.
  52. 52.
    Antón, R., Chen, C.-Y., Hung, M.-Y., Finol, E. A., & Pekkan, K. (2015). Experimental and computational investigation of the patient-specific abdominal aortic aneurysm pressure field. Computer Methods in Biomechanics and Biomedical Engineering, 18(9), 981–992.  https://doi.org/10.1080/10255842.2013.865024.CrossRefGoogle Scholar
  53. 53.
    Biglino, G., Capelli, C., Bruse, J., Bosi, G. M., Taylor, A. M., & Schievano, S. (2017). Computational modelling for congenital heart disease: how far are we from clinical translation? Heart, 103(2), 98–103.  https://doi.org/10.1136/heartjnl-2016-310423.CrossRefGoogle Scholar
  54. 54.
    Mortazavinia, Z., Arabi, S., & Mehdizadeh, A. R. (2014). Numerical investigation of angulation effects in stenosed renal arteries. Journal of Biomedical Physics and Engineering, 4, 115–122.Google Scholar
  55. 55.
    Borazjani, I., Ge, L., & Sotiropoulos, F. (2008). Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. Journal of Computational Physics, 227(16), 7587–7620.  https://doi.org/10.1016/j.jcp.2008.04.028.MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Wan Ab Naim, W. N., Ganesan, P. B., Sun, Z., Chee, K. H., Hashim, S. A., & Lim, E. (2014). A perspective review on numerical simulations of hemodynamics in aortic dissection. The Scientific World Journal, 2014, 652520.  https://doi.org/10.1155/2014/652520.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Biomedical Engineering, Faculty of MedicinePrince of Songkla UniversityHat YaiThailand
  2. 2.Department of Biomedical Technology, College of Applied Medical ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations