Advertisement

BioNanoScience

, Volume 9, Issue 4, pp 862–872 | Cite as

Genetically Engineered Fd Viruses for Site Specific Material Binding

  • Nuriye KorkmazEmail author
  • Taner Arslan
Article

Abstract

Filamentous bacteriophages are viruses infecting only bacteria. In this study, filamentous fd viruses were genetically engineered to display specific gold- (V5) and platinum-binding (p7A) peptides on the head part (P9 minor coat protein). Gold-binding properties of recombinant p9V5, p9P7A, and wild-type fd viruses were investigated by Quartz Crystal Microbalance (QCM), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDX), and UV-Vis spectroscopy analyses. Displaying only 5 copies of V5 peptides on head part of viruses resulted in site-specific Au-binding. Surprisingly, p9p7A viruses, as well, showed enhanced gold-binding properties with respect to wild-type fd viruses. Filamentous fd viruses are good candidates of genetically programmable biotemplates for mineralization and metallization studies.

Keywords

Bottom-up manufacturing Genetic engineering Biotemplating Filamentous bacteriophages Gold Metallization 

Abbreviations

A

Alanine

AFM

Atomic force microscopy

Au

Gold

C

Carbon

D

Aspartic acid

EBL

Electron beam lithography

EDX

Energy dispersive X-ray spectroscopy

FIB

Focused ion beam lithography

FP

Forward primer

G

Glycine

H

Histidine

HEPES

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

L

Leucine

M

Methionine

NP

Nanoparticle

P

Proline

Pt

Platinum

p7A

Specific platinum-binding peptide TLHVSSY

QCM

Quartz crystal microbalance

RP

Reverse Primer

S

Serine

SEM

Scanning electron microscopy

T

Threonine

TMV

Tobacco mosaic virus

V

Valine

VLP

Virus-like particle

V5

Specific gold-binding peptide VSGSSPDS

Y

Tyrosine

Notes

Compliance with Ethical Statements

Conflict of Interest

None.

Ethical Approval

None.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Funding

This work was supported by Korea Institute of Science and Technology-Europe basic research program (11807 and 11906).

References

  1. 1.
    Hobbs, R. G., Petkov, N., & Holmes, J. D. (2012). Semiconductor nanowire fabrication by bottom-up and top-down paradigms. Chemistry of Materials, 24, 1975–1991.Google Scholar
  2. 2.
    Chan, H. K., & Kwok, P. C. (2011). Production methods for nanodrug particles using the bottom-up approach. Advanced Drug Delivery Reviews, 63, 406–416.Google Scholar
  3. 3.
    Majumder, D. D., Banerjee, R., Ulrichs, C. H., Mewis, I., & Goswami, A. (2007). Nano-materials: science of bottom-up and top-down. IETE Technical Review, 24, 9–25.Google Scholar
  4. 4.
    Sinha, B., Müller, R. H., & Möschwitzer, J. P. (2013). Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size. International Journal of Pharmaceutics, 453, 126–141.Google Scholar
  5. 5.
    Slocik, J. M., Kim, S. N., Whitehead, T. A., Clark, D. S., & Naik, R. R. (2009). Biotemplated metal nanowires using hyperthermophilic protein filaments. Small, 5, 2038–2042.Google Scholar
  6. 6.
    Yang, Y., Constance, B. H., Deymier, P. A., Hoying, J., Raghavan, S., & Zelinski, J. J. (2004). Electroless metal plating of microtubules: effect of microtubule-associated proteins. Journal of Materials Science, 39, 1927–1933.Google Scholar
  7. 7.
    Mijatovic, D., Eijkel, J. C., & van den Berg, A. (2005). Technologies for nanofluidic systems: top-down versus bottom-up-a review. Lab on a Chip, 5, 492–500.Google Scholar
  8. 8.
    Korkmaz, N., Börrnert, F., Köhler, D., Mendes, R. G., Bachmatiuk, A., Rümmeli, M. H., Büchner, B., Eng, L. M., & Rödel, G. (2011). Nanotechnology, 22, 375606.Google Scholar
  9. 9.
    Dujardin, E., Peet, C., Stubbs, G., Culver, J. N., & Mann, S. (2003). Organization of metallic nanoparticles using tobacco mosaic virus templates. Nano Letters, 3, 413–417.Google Scholar
  10. 10.
    Erler, C., Günther, K., & Mertig, M. (2009). Photo-induced synthesis of DNA-templated metallic nanowires and their integration into micro-fabricated contact arrays. Applied Surface Science, 255, 9647–9651.Google Scholar
  11. 11.
    Gu, Q., Cheng, C., & Haynie, D. T. (2005). Cobalt metallization of DNA: toward magnetic nanowires. Nanotechnology, 16, 1358–1363.Google Scholar
  12. 12.
    Wang, Y., Ouyang, G., Zhang, J., & Wang, Z. (2010). A DNA-templated catalyst: the preparation of metal-DNA nanohybrids and their application in organic reactions. Chemical Communications, 46, 7912–7914.Google Scholar
  13. 13.
    Ohmichi, T., Kawamoto, Y., Wu, P., Miyoshi, D., Karimata, H., & Sugimoto, N. (2005). DNA-based biosensor for monitoring pH in vitro and in living cells. Biochemistry, 44, 7125–7130.Google Scholar
  14. 14.
    Noad, R., & Roy, P. (2003). Virus-like particles as immunogens. Trends in Microbiology, 11, 438–444.Google Scholar
  15. 15.
    Atanasova, P., Kim, I., Chen, B., Eiben, S., & Bill, J. (2017). Controllable virus-directed synthesis of nanostructured hybrids induced by organic/inorganic interactions. Advanced Biosystems, 1(11), 1700106.Google Scholar
  16. 16.
    Zdanowicz, M., & Chroboczek, J. (2016). Virus-like particles as drug delivery vectors. Acta Biochimica Polonica, 63, 469–473.Google Scholar
  17. 17.
    Hemminga, M. A., Vos, W. L., Nazarov, P. V., Koehorst, R. B., Wolfs, C. J., Spruijt, R. B., & Stopar, D. (2010). Viruses: incredible nanomachines. New advances with filamentous phages. European Biophysics Journal, 39, 541–550.Google Scholar
  18. 18.
    Peeters, B. P., Peters, R. M., Schoenmakers, J. G., & Konings, R. N. (1985). Nucleotide sequence and genetic organization of the genome of the N-specific filamentous bacteriophage IKe: comparison with the genome of the F-specific filamentous phages M13, fd and f1. Journal of Molecular Biology, 181, 27–39.Google Scholar
  19. 19.
    Marvin, D. A., Hale, R. D., Nave, C., & Citterich, M. H. (1994). Molecular models and structural comparisons of native and mutant class I filamentous bacteriophages: Ff (fd, f1, M13), If1 and IKe. Journal of Molecular Biology, 235, 260–286.Google Scholar
  20. 20.
    Rakonjac, J., Bennett, N. J., Spagnuolo, J., Gagic, D., & Russel, M. (2011). Filamentous bacteriophage: biology, phage display and nanotechnology applications. Current Issues in Molecular Biology, 13, 51.Google Scholar
  21. 21.
    Click, E. M., & Webster, R. E. (1997). Filamentous phage infection: required interactions with the TolA protein. Journal of Bacteriology, 179, 6464–6471.Google Scholar
  22. 22.
    Hoffmann-Berling, H., Dürwald, H., & Beulke, I. (1963). Ein fädiger DNS-Phage (fd) und ein sphärischer RNS-Phage (fr) wirtsspezifisch fur männliche Stämme von E. coli. III. Biologisches Verhalten von fd und fr. Zeitschrift für Naturforschung Part B, 18, 893–898.Google Scholar
  23. 23.
    Wang, Y. A., Yu, X., Overman, S., Tsuboi, M., Thomas, G. J., Jr., & Egelman, E. H. (2006). The structure of a filamentous bacteriophage. Journal of Molecular Biology, 361, 209–215.Google Scholar
  24. 24.
    Kuzmicheva, G. A., & Belyavskaya, V. A. (2017). Peptide phage display in biotechnology and biomedicine. Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry, 11, 1–15.Google Scholar
  25. 25.
    Smith, G. P. (1985). Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science, 228, 1315–1317.Google Scholar
  26. 26.
    Salmond, G. P., & Fineran, P. C. (2015). A century of the phage: past, present and future. Nature Reviews. Microbiology, 13, 777.Google Scholar
  27. 27.
    Whaley, S. R., English, D. S., Hu, E. L., Barbara, P. F., & Belcher, A. M. (2000). Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature, 405, 665–668.Google Scholar
  28. 28.
    López, I., & Pardo, M. A. (2011). A phage display system for the identification of novel Anisakis simplex antigens. Journal of Immunological Methods, 373, 247–251.Google Scholar
  29. 29.
    Whitney, M., Crisp, J. L., Olson, E. S., Aguilera, T. A., Gross, L. A., Ellies, L. G., & Tsien, R. Y. (2010). Parallel in vivo and in vitro selection using phage display identifies protease-dependent tumor-targeting peptides. The Journal of Biological Chemistry, 285, 22532–22541.Google Scholar
  30. 30.
    Rao, S. S., Mohan, K. V., Gao, Y., & Atreya, C. D. (2013). Identification and evaluation of a novel peptide binding to the cell surface of Staphylococcus aureus. Microbiological Research, 168, 106–112.Google Scholar
  31. 31.
    Huang, Y., Chiang, C. Y., Lee, S. K., Gao, Y., Hu, E. L., De Yoreo, J. J., & Belcher, A. M. (2005). Programmable assembly of nano- architectures using genetically engineered viruses. Nano Letters, 5, 1429–1434.Google Scholar
  32. 32.
    Lee, Y., Kim, J., Yun, D. S., Nam, Y. S., Shao-Horn, Y., & Belcher, A. M. (2012). Virus-templated au and au−Pt core−shell nanowires and their electrocatalytic activities for fuel cell applications. Energy & Environmental Science, 5, 8328–8334.Google Scholar
  33. 33.
    Adams, B. L., Hurley, M. M., Jahnke, J. P., & Stratis-Cullum, D. N. (2015). Functional and selective bacterial interfaces using cross-scaffold gold binding peptides. JOM, 67, 2483–2493.Google Scholar
  34. 34.
    Li, Y., Whyburn, G. P., & Huang, Y. (2009). Specific peptide regulated synthesis of ultrasmall platinum nanocrystals. JACS, 131, 15998–15999.Google Scholar
  35. 35.
    Tao, K., Wang, J., Li, Y., Xia, D., Shan, H., Xu, H., & Lu, J. R. (2013). Short peptide-directed synthesis of one-dimensional platinum nanostructures with controllable morphologies. Scientific Reports, 3, 2565.Google Scholar
  36. 36.
    Kushwaha, A., Chowdhury, P. S., Arora, K., Abrol, S., & Chaudhary, V. K. (1994). Construction and characterization of M13 bacteriophages displaying functional IgG-binding domains of staphylococcal protein A. Gene, 151, 45–51.Google Scholar
  37. 37.
    Korkmaz, N. (2013). Recombinant bacteriophages as gold binding bio-templates. Colloids and Surfaces, B: Biointerfaces, 112, 219–228.Google Scholar
  38. 38.
    Korkmaz Zirpel, N., Arslan, T., & Lee, H. (2015). Engineering filamentous bacteriophages for enhanced gold binding and metallization properties. Journal of Colloid and Interface Science, 454, 80–88.Google Scholar
  39. 39.
    Ghosh, D., Kohli, A. G., Moser, F., Endy, D., & Belcher, A. M. (2012). Refactored M13 bacteriophage as a platform for tumor cell imaging and drug delivery. ACS Synthetic Biology, 1, 576–582.Google Scholar
  40. 40.
    Uttenthaler, E., Schräml, M., Mandel, J., & Drost, S. (2001). Ultrasensitive quartz crystal microbalance sensors for detection of M13-phages in liquids. Biosensors & Bioelectronics, 16, 735–743.Google Scholar
  41. 41.
    Stanley, S. K., Becker, M. L., Lin, E. K., & Wu, W. L. (2009). Inhibitory effects of a phage-derived peptide on Au nanocrystal nucleation and growth. Langmuir, 25, 10886–10892.Google Scholar
  42. 42.
    Chen, R., Wu, J., Li, H., Cheng, G., Lu, Z., & Che, C. M. (2010). Fabrication of gold nanoparticles with different morphologies in HEPES buffer. Rare Metals, 29, 180–186.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Biosensor GroupKorea Institute of Science and Technology Europe Forschungsgesellschaft mbHSaarbrückenGermany
  2. 2.Department of Oncology-Pathology, Cancer Proteomics Science for Life LaboratoryKarolinska InstitutetSolnaSweden

Personalised recommendations