Advertisement

Novel Solid Dispersions Increasing the Solubility of Prothionamide

  • Ivan I. KrasnyukJrEmail author
  • Anastasiya V. Beliatskaya
  • Ivan I. Krasnyuk
  • Olga I. Stepanova
  • Irina V. Galkina
  • Sergey V. Lutsenko
  • Tatyana M. Litvinova
Article
  • 2 Downloads

Abstract

Water solubility of prothionamide and its solid dispersions with polyethylene glycol-1500, polyvinylpyrrolidone-10000, and β-cyclodextrin was studied. The most promising results were obtained with the solid dispersion with polyvinylpyrrolidone, which provided a 2.6-fold general increase of drug’s solubility and about a 6-fold dissolution rate increase, the maximal values among the studied drug forms. The results of complex physicochemical studies suggested that the improved drug release was due to micronization and solubilizing action of the polymer. A principal factor was the destruction of the crystal lattice and formation of amorphous particles in the solid dispersion. The obtained data can be useful for the development of modified pharmaceutical forms of prothionamide with improved drug release profile.

Keywords

Prothionamide Solid dispersions Polyethyleneglycol-1500 (PEG) Polyvinylpyrrolidone-10000 (PVP) β-Cyclodextrin Solubility 

Notes

Acknowledgments

The work is performed according to the Russian Government Program of Competitive Growth of I.M. Sechenov First Moscow State University and Kazan Federal University.

Compliance with Ethical Standards

Conflict of Interest

None.

Research Involving Humans and Animals Statement

Research were conducted “in vitro” without involving humans and animals.

Informed Consent

None.

Funding Statement

None.

References

  1. 1.
    Thee, S., Garcia-Prats, A. J., Donald, P. R., Hesseling, A. C., & Schaaf, H. S. (2016). A review of the use of ethionamide and prothionamide in childhood tuberculosis. Tuberculosis (Edinburgh, Scotland), 97, 126–136.  https://doi.org/10.1016/j.tube.2015.09.007.CrossRefGoogle Scholar
  2. 2.
    Scardigli, A., Caminero, J. A., Sotgiu, G., Centis, R., D'Ambrosio, L., & Migliori, G. B. (2016). Efficacy and tolerability of ethionamide versus prothionamide: A systematic review. The European Respiratory Journal, 48, 946–952.  https://doi.org/10.1183/13993003.00438-2016.CrossRefGoogle Scholar
  3. 3.
    Nishida, C. R., & Ortiz de Montellano, P. R. (2011). Bioactivation of antituberculosis thioamide and thiourea prodrugs by bacterial and mammalian flavin monooxygenases. Chemico-Biological Interactions, 192, 21–25.  https://doi.org/10.1016/j.cbi.2010.09.015.CrossRefGoogle Scholar
  4. 4.
    Fajardo, T. T., Guinto, R. S., Cellona, R. V., Abalos, R. M., Dela Cruz, E. C., & Gelber, R. H. (2006). A clinical trial of ethionamide and prothionamide for treatment of lepromatous leprosy. The American Journal of Tropical Medicine and Hygiene, 74, 457–461.CrossRefGoogle Scholar
  5. 5.
    Park, S. I., Oh, J., Jang, K., et al. (2015). Pharmacokinetics of second-line antituberculosis drugs after multiple administrations in healthy volunteers. Antimicrobial Agents and Chemotherapy, 59, 4429–4435.  https://doi.org/10.1128/AAC.00354-15.CrossRefGoogle Scholar
  6. 6.
    Tran, P. H., Tran, T. T., Park, J. B., & Lee, B. J. (2011). Controlled release systems containing solid dispersions: Strategies and mechanisms. Pharmaceutical Research, 28, 2353–2378.  https://doi.org/10.1007/s11095-011-0449-y.CrossRefGoogle Scholar
  7. 7.
    Vo, C. L., Park, C., & Lee, B. J. (2013). Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. European Journal of Biopharmaceutics, 85, 799–813.  https://doi.org/10.1016/j.ejpb.2013.09.007.CrossRefGoogle Scholar
  8. 8.
    Baghel, S., Cathcart, H., & O'Reilly, N. J. (2016). Polymeric amorphous solid dispersions: A review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. Journal of Pharmaceutical Sciences, 105(9), 2527–2544.  https://doi.org/10.1016/j.xphs.2015.10.008.CrossRefGoogle Scholar
  9. 9.
    Maksimenko, O. O., Ravikumar, S., Andreev, S. M., Krasnyuk, I. I., & Vasilyev, A. E. (2001). Stability of transdermal therapeutic systems with indomethacin. Pharmaceutical Chemistry Journal, 35, 53–55.CrossRefGoogle Scholar
  10. 10.
    Tkachenko, M. L., Smelova, S. G., Zhnyakina, L. E., & Pavlova, L. V. (2006). The solid dispersions of phenylbutazone as the hydrophilic medium. Pharmacy, 3, 31–35 (in Russian).Google Scholar
  11. 11.
    Kowalski, I. V., Krasnyuk, I. I., Krasnyuk, I. I., Jr., Nikulina, O. I., Beliatskaya, A. B., & Kharitonov, U. Y. (2014). Mechanisms of rutin pharmacological action (review). Pharma Chemica J, 48, 3–6.  https://doi.org/10.1007/s11094-014-1050-6.Google Scholar
  12. 12.
    Krasnyuk, I. I., Jr., Ovsyannikova, L. V., Nikulina, O. I., Beliatskaya, A. V., & Krasnyuk, I. I. (2014). The study of the solubility of diclofenac acid from solid dispersions. Pharmaceutical Chemistry Journal, 48, 23–27.Google Scholar
  13. 13.
    Krasnyuk, I. I., Beliatskaya, A. V., Krasnyuk, I. I., et al. (2016). Effects of solid dispersions on the dissolution of ampicillin. BioNanoScience.  https://doi.org/10.1007/s12668-016-0342-6.
  14. 14.
    Ali, W., Williams, A. C., & Rawlinson, C. F. (2010). Stochiometrically governed molecular interactions in drug: Poloxamer solid dispersions. International Journal of Pharmaceutics, 391, 162–168.  https://doi.org/10.1016/j.ijpharm.2010.03.014.CrossRefGoogle Scholar
  15. 15.
    Yan, Y. D., Sung, J. H., Kim, K. K., Yong, C. S., & Choi, H. G. (2012). Novel valsartan-loaded solid dispersion with enhanced bioavailability and no crystalline changes. International Journal of Pharmaceutics, 422, 202–210.  https://doi.org/10.1016/j.ijpharm.2011.10.053.CrossRefGoogle Scholar
  16. 16.
    Vasanthavada, M., Tong, W. Q., Joshi, Y., & Kislalioglu, M. S. (2004). Phase behavior of amorphous molecular dispersions I: Determination of the degree and mechanism of solid solubility. Pharmaceutical Research, 21, 1598–1606.  https://doi.org/10.1023/B:PHAM.0000041454.76342.0e.CrossRefGoogle Scholar
  17. 17.
    Vasanthavada, M., Tong, W. Q., Joshi, Y., & Kislalioglu, M. S. (2005). Phase behavior of amorphous molecular dispersions II: Role of hydrogen bonding in solid solubility and phase separation kinetics. Pharmaceutical Research, 22, 440–448.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ivan I. KrasnyukJr
    • 1
    Email author
  • Anastasiya V. Beliatskaya
    • 1
  • Ivan I. Krasnyuk
    • 1
  • Olga I. Stepanova
    • 1
  • Irina V. Galkina
    • 2
  • Sergey V. Lutsenko
    • 1
  • Tatyana M. Litvinova
    • 1
  1. 1.I.M. Sechenov First Moscow State Medical UniversityMoscowRussian Federation
  2. 2.Kazan Federal UniversityKazanRussian Federation

Personalised recommendations