Advertisement

BioNanoScience

, Volume 9, Issue 4, pp 918–927 | Cite as

Evaluation of the Effectiveness of Genetic Markers of Mycobacteria for Assessing the Disinfection Quality by Viability Real Time PCR

  • Nail I. KhammadovEmail author
  • Natalya M. Aleksandrova
  • Alfiya V. Khammadova
  • Eduard A. Shuralev
Article
  • 30 Downloads

Abstract

The research was aimed to evaluate the effectiveness of genetic markers when assessing the vitality of mycobacteria after room disinfection as a disinfection quality parameter. To achieve this goal, the mycobacterial genome was analyzed, and genetic markers identifying mycobacteria and marker mycobacterial products with the shortest lifetime after a mycobacterial cell dies were sought for. A room where animals were experimentally infected with mycobacteria was examined. Mycobacterium and the Mycobacterium tuberculosis complex DNA markers can be detected in one tube in CY5 and R6G channels. To differentiate Mycobacterium bovis BCG and the Mycobacterium tuberculosis complex, DNA deletion was detected using ROX- and R6G-labeled PCR probes. The comparison of genetic identification and mycobacterial vitality evaluation results with those of bacteriological tests completely confirm the effectiveness of genetic detection of mycobacterial viability. This approach to evaluate the disinfection quality makes it possible to avoid false-positive (using classic PCR) and false-negative (using bacteriologic culturing) results when controlling the tuberculosis causative agents.

Keywords

Mycobacterium Genomics Marker loci PCR Disinfection 

Notes

Acknowledgements

This study was supported by the Russian Government Program of Competitive Growth of Kazan Federal University.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interest

Research Involving Humans and Animals Statement

No animals were used in this study.

Funding Statement

This research received no specific grant from any funding agency in the public, commercial, or non-for-profit sectors.

References

  1. 1.
    Agustí, G., Fittipaldi, M., & Codony, F. (2017). False-positive viability PCR results: an association with microtubes. Current Microbiology, 74(3), 377–380.  https://doi.org/10.1007/s00284-016-1189-3.CrossRefGoogle Scholar
  2. 2.
    Aleksandrova, N. M., Faizov, T. K., Vasileva, A. V., Rogozhina, I. A., Khammadov, N. I., & Shuralev, E. A. (2018). Indication and identification of Bacillus anthracis isolates from the Middle Volga Region by multi-primer PCR. BioNanoScience., 8(1), 434–440.  https://doi.org/10.1007/s12668-017-0477-0.CrossRefGoogle Scholar
  3. 3.
    Behr, M. A. (2013). Evolution of Mycobacterium tuberculosis. Advances in Experimental Medicine and Biology, 783, 81–91.  https://doi.org/10.1007/978-1-4614-6111-1_4.CrossRefGoogle Scholar
  4. 4.
    Brites, D., & Gagneux, S. (2017). The nature and evolution of genomic diversity in the Mycobacterium tuberculosis complex. Advances in Experimental Medicine and Biology, 1019, 1–26.  https://doi.org/10.1007/978-3-319-64371-7_1.CrossRefGoogle Scholar
  5. 5.
    Choo, S. W., Dutta, A., Wong, G. J., Wee, W. Y., Ang, M. Y., & Siow, C. C. (2016). Comparative genomic analysis reveals a possible novel non-tuberculous Mycobacterium species with high pathogenic potential. PLoS One, 11(4), e0150413.  https://doi.org/10.1371/journal.pone.0150413.CrossRefGoogle Scholar
  6. 6.
    Davis, G. L., Ray, N. A., Lahiri, R., Gillis, T. P., Krahenbuhl, J. L., Williams, D. L., & Adams, L. B. (2013). Molecular assays for determining Mycobacterium leprae viability in tissues of experimentally infected mice. PLoS Neglected Tropical Diseases, 7(8), e2404.  https://doi.org/10.1371/journal.pntd.0002404.CrossRefGoogle Scholar
  7. 7.
    Della Bella, C., Spinicci, M., Grassi, A., Bartalesi, F., Benagiano, M., Truthmann, K., Tapinassi, S., Troilo, A., D’Elios, S., Alnwaisri, H., Shuralev, E., Singh, M., Bartoloni, A., & D’Elios, M. M. (2018). Novel M. tuberculosis specific IL-2 ELISpot assay discriminates adult patients with active or latent tuberculosis. PLoS One, 13(6), e0197825.  https://doi.org/10.1371/journal.pone.0197825.CrossRefGoogle Scholar
  8. 8.
    Dinh Thanh, M., Agustí, G., Mader, A., Appel, B., & Codony, F. (2017). Improved sample treatment protocol for accurate detection of live Salmonella spp. in food samples by viability PCR. PLoS One, 12(12), e0189302.  https://doi.org/10.1371/journal.pone.0189302.CrossRefGoogle Scholar
  9. 9.
    Janssen, K. J., Hoebe, C. J., Dukers-Muijrers, N. H., Eppings, L., Lucchesi, M., & Wolffs, P. F. (2016). Viability-PCR shows that NAAT detects a high proportion of DNA from non-viable Chlamydia trachomatis. PLoS One, 11(11), e0165920.  https://doi.org/10.1371/journal.pone.0165920.CrossRefGoogle Scholar
  10. 10.
    Jou, N. T., Yoshimori, R. B., Mason, G. R., Louie, J. S., & Liebling, M. R. (1997). Single-tube, nested, reverse transcriptase PCR for detection of viable Mycobacterium tuberculosis. Journal of Clinical Microbiology, 35(5), 1161–1165.Google Scholar
  11. 11.
    Khaertynov, K. S., Valeeva, A. R., Ivanov, A. V., Mukminov, M. N., Urazov, N. G., Khaertynova, I. M., Aleksandrova, N. M., Moskvicheva, A. V., Efimova, M. A., Akhmadeev, R. M., Samigullina, E. S., Nabatov, A. A., & Shuralev, E. A. (2018). Extraction and serological properties of Mycobacterium cell surface and excreted proteins. BioNanoScience., 8(1), 459–466.  https://doi.org/10.1007/s1266.CrossRefGoogle Scholar
  12. 12.
    Khammadova, A. V., Shuralev, E. A., Khammadov, N. I., Oumarou, B. M., Faizov, T. K., & Mukminov, M. N. (2017). Design of primers for identification of honey bee viruses in multiplex-PCR. Astra Salvensis., 5(Suppl. 1), 481–489.Google Scholar
  13. 13.
    Khammadova, A. V., Khammadov, N. I., Kosarev, M. A., Osyanin, K. A., & Shuralev, E. A. (2018). Investigating nano particles in bioinformatic analysis of the brucella genome for indication and differentation by qPCR. International Journal of Engineering and Technology (UAE), 7(4.7), 227–230.CrossRefGoogle Scholar
  14. 14.
    Kralik, P., Babak, V., & Dziedzinska, R. (2014). Repeated cycles of chemical and physical disinfection and their influence on Mycobacterium avium subsp. paratuberculosis viability measured by propidiummonoazide F57 quantitative real time PCR. Veterinary Journal, 201(3), 359–364.  https://doi.org/10.1016/j.tvjl.2014.05.032.CrossRefGoogle Scholar
  15. 15.
    Mahairas, G. G., Sabo, P. J., Hickey, M. J., Singh, D. C., & Stover, C. K. (1996). Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. Journal of Bacteriology., 178(5), 1274–1282.CrossRefGoogle Scholar
  16. 16.
    Slavchev, G., Michailova, L., & Markova, N. (2013). Stress-induced L-forms of Mycobacterium bovis: a challenge to survivability. The New Microbiologica, 36(2), 157–166.Google Scholar
  17. 17.
    Vasilyeva, E., Abdulkhakov, S., Cherepnev, G., Martynova, E., Mayanskaya, I., Valeeva, A., Abdulkhakov, R., Safina, D., Khaiboullina, S., & Rizvanov, A. (2016). Serum cytokine profiles in children with Crohn’s disease. Mediators of Inflammation, 2016, 7420127.  https://doi.org/10.1155/2016/7420127.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Federal Center for Toxicological, Radiation and Biological SafetyKazanRussian Federation
  2. 2.Kazan Federal UniversityKazanRussian Federation
  3. 3.Russian Medical Academy of Continuous Professional Education (Kazan State Medical Academy Branch)KazanRussian Federation

Personalised recommendations