Functional State of the Neuromotor Apparatus of the Gastrocnemius Muscle in Rat Under Microgravity: Effect of Spinal Cord Stimulation

  • Anton EremeevEmail author
  • Artur Fedianin
  • Irina Lvova
  • Nailia Galiullina
  • Alexandr Eremeev
  • Tatyana Baltina
  • Oskar Sachenkov


The aim of this study was the evaluation of the functional state of the neuromotor apparatus of the gastrocnemius muscle in rat under conditions of gravitational unloading, as well as in conditions of gravitational unloading combined with magnetic stimulation of the spinal cord. The electrical potentials of gastrocnemius muscle of the rat evoked by the stimulation of the sciatic nerve were recorded after a week of exposure the animal in the experimental conditions. Parameters of motor response and H-reflex were evaluated. It was found that gravitational unloading caused an increase of the reflex excitability of the motor centers of gastrocnemius muscle of the rat and magnetic stimulation of the spinal cord combined with unloading increased the intensity of transformations. In addition, it was registered the changes of the functional state of the muscle under conditions of gravitational unloading combined with the stimulation of the spinal cord. The detected transformations were probably associated with the activation of adaptation processes in the new motor environment (simulation of the microgravity, restriction of peripheral afferentation including the support afferentation).


Microgravity Hindlimb unloading Motor center Spinal cord stimulation Electromyography 


Funding Information

This work was supported by RSF, research project no. 18-75-10027.


  1. 1.
    Kozlovskaya, I. B., Kreidich, Y. V., & Rakhmanov, A. S. (1981). Mechanisms of the effects of weightlessness on the motor system of man. The Physiologist, 24, 559–564.Google Scholar
  2. 2.
    Shenkman, B. S., Belozerova, I. N., Lee, P., Nemirovskaya, T. L., & Kozlovskaya, I. B. (2003). Effects of weightlessness and movement restriction on the structure and metabolism of the soleus muscle in monkeys after space flight. Neuroscience and Behavioral Physiology, 33(7), 717–722.CrossRefGoogle Scholar
  3. 3.
    Eremeev, A. A., Baltina, T. V., Fedyanin, A. O., Eremeev, A. M., & Lavrov, I. A. (2016). Effect of gravitational unloading on rat’s gastrocnemius muscle spinal motor center. BioNanoSci., 6(4), 368–369.CrossRefGoogle Scholar
  4. 4.
    Gerasimenko, Y., Edgerton, V. R., & Kozlovskaya, I. (2016). Sensorimotor regulation of movements: novel strategies for the recovery of mobility. Human Physiology, 42(1), 90–102.CrossRefGoogle Scholar
  5. 5.
    Gorodnichev, R. M., Machueva, E. N., Pivovarova, E. A., Semenov, D. V., Ivanov, S. M., Edgerton, V. R., Savokhin, A. A., & Gerasimenko, Y. P. (2010). A new method for the activation of the locomotor circuitry in humans. Human Physiology, 36(6), 700–707.CrossRefGoogle Scholar
  6. 6.
    Scherbakova, N. A., Bogacheva, I. N., Zelenkova, N. M., Savohin, A. A., Moshonkina, T. R., & Gerasimenko, Y. P. (2012). Investigation of effects of the electromagnetic spinal cord stimulation on the hindlimbs muscles reflexes in narcotized rats. Bulletin TSU. Series: Biology and Ecology, 26, 15–22.Google Scholar
  7. 7.
    Gerasimenko, Y. P., Avelev, V. D., Nikitin, O. A., & Lavrov, I. A. (2003). Initiation of locomotor activity in spinal cats by epidural stimulation of the spinal cord. Neuroscience and Behavioral Physiology, 33, 247–254.CrossRefGoogle Scholar
  8. 8.
    Lavrov, I., Dy, C. J., Fong, A. J., Gerasimenko, Y., Courtine, G., Zhong, H., et al. (2008). Epidural stimulation induced modulation of spinal locomotor networks in adult spinal rats. The Journal of Neuroscience, 28, 6022–6029.CrossRefGoogle Scholar
  9. 9.
    Ilin, E. A., & Novikov, V. E. (1980). Stand for modelling the physiological effects of weightlessness in laboratory experiments with rats. Kosmicheskaya biologiya i aviakosmicheskaya meditsina., 3, 79–80.Google Scholar
  10. 10.
    Morey-Holton, E. R., & Globus, R. K. (2002). Hindlimb unloading rodent model: technical aspects. Journal of Applied Physiology, 92, 1367–1377.CrossRefGoogle Scholar
  11. 11.
    Scherbakova, N. A., Bogacheva, I. N., Zelenkova, N. M., Savohin, A. A., Moshonkina, T. R., & Gerasimenko, Y. P. (2012). Investigation of effects of the electromagnetic spinal cord stimulation on the hindlimbs muscles reflexes in narcotized rats. Herald of TVGU. Series: Biology and Ecology., 26(16), 15–22.Google Scholar
  12. 12.
    D'Amelio, F., Fox, R. A., Wu, L. C., Daunton, N. G., & Corcoran, M. L. (1998). Effects of microgravity on muscle and cerebral cortex: a suggested interaction. Advances in Space Research, 22(2), 235–244.CrossRefGoogle Scholar
  13. 13.
    Krivoi, I. I., Kravtsova, V. V., Kubasov, I. V., Prokof'ev, A. V., Drabkina, T. M., Altaeva, E. G., Shenkman, B. S., & Nikol'sky, E. E. (2008). Decrease in the electrogenic contribution of Na,K-ATPase and the resting membrane potential as a possible mechanism of Ca2+ accumulation in rat soleus muscle in a short-term gravity unloading. Biophysics, 53(6), 586–591.CrossRefGoogle Scholar
  14. 14.
    Islamov, R. R., Tyapkina, O. V., Nikolskij, E. E., Kozlovskaya, I. B., & Grigor’ev, A. I. (2013). The role of spinal motoneurons in the mechanisms of development of hypogravitational motor syndrome. Russian Journal of Physiology (formerly I.M Sechenov Physiological Journal)., 99(3), 281–293.Google Scholar
  15. 15.
    Kawano, F., Nomura, T., Ishihara, A., Nonaka, I., & Ohira, Y. (2002). Afferent input-associated reduction of muscle activity in microgravity environment. Neuroscience, 114, 1133–1138.CrossRefGoogle Scholar
  16. 16.
    Pierrot-Deseilligny, E., & Mazevet, D. (2000). The monosynaptic reflex: a tool to investigate motor control in humans. Interest and limits. Clinical Neurophysiology, 30(2), 67–80.CrossRefGoogle Scholar
  17. 17.
    Johannsson, J., Duchateau, J., & Baudry, S. (2015). Presynaptic inhibition of soleus Ia afferents does not vary with center of pressure displacements during upright standing. Neuroscience, 298, 63–73.CrossRefGoogle Scholar
  18. 18.
    Palmieri, R. M., Ingersoll, C. D., & Hoffman, M. A. (2004). The Hoffmann reflex: methodologic considerations and applications for use in sports medicine and athletic training research. Journal of Athletic Training, 39, 268–277.Google Scholar
  19. 19.
    Lee, H. J., Jakovcevski, I., Radonjic, N., Hoelters, L., Schachner, M., & Irintchev, A. (2009). Better functional outcome of compression spinal cord injury in mice is associated with enhanced H-reflex responses. Experimental Neurology, 216(2), 365–374.CrossRefGoogle Scholar
  20. 20.
    Grigoriev, A. I., Kozlovskaya, I. B., & Shenkman, B. S. (2004). The role of support afferents in organisation of the tonic muscle system. Rossiyskiy fiziologicheskiy zhurnal im I. M. Sechenova., 9(5), 508–521.Google Scholar
  21. 21.
    Miller, T. F., Saenko, I. V., Popov, D. V., Vinogradova, O. L., & Kozlovskaya, I. B. (2004). Effect of mechanical stimulation of the support zones of soles on the muscle stiffness in 7-day dry immersion. Journal of Gravitational Physiology, 11(2), 135–136.Google Scholar
  22. 22.
    Kirenskaia, A. V., Kozlovskaia, I. B., & Sirota, M. G. (1986). Effect of immersion hypokinesia on the characteristics of the rhythmic activity of the motor units of the soleus muscle. Fiziologiya cheloveka., 12(4), 627–632.Google Scholar
  23. 23.
    Shenkman, B. S. (2016). From slow to fast: hypogravity-induced remodeling of muscle fiber myosin phenotype. Acta Naturae, 8(4), 47–59.Google Scholar
  24. 24.
    Harkema, S., Gerasimenko, Y., & Hodes, J. (2011). Epidural stimulation of the lumbosacral spinal cord enables voluntary movement, standing, and assisted stepping in a paraplegic human. Lancet, 377, 1938–1940.CrossRefGoogle Scholar
  25. 25.
    Edgerton, V. R., & Harkema, S. (2011). Epidural stimulation of the spinal cord in spinal cord injury: current status and future challenges. Expert Review of Neurotherapeutics, 11(10), 1351–1353.CrossRefGoogle Scholar
  26. 26.
    Lungu, O., Frigon, A., Piché, M., Rainville, P., Rossignol, S., & Doyon, J. (2010). Changes in spinal reflex excitability associated with motor sequence learning. Journal of Neurophysiology, 103(5), 2675–2683.CrossRefGoogle Scholar
  27. 27.
    Gerasimenko, Y., Savochin, A., Gorodnichev, R., Machueva, E., Pivovarova, E., Semyenov, D., Roy, R. R., & Edgerton, V. R. (2010). Novel and direct access to the human locomotor spinal circuitry. The Journal of Neuroscience, 30, 3700–3708.CrossRefGoogle Scholar
  28. 28.
    Angeli, C. A., Edgerton, V. R., Gerasimenko, Y. P., & Harkema, S. J. (2014). Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain, 137(5), 1394–1409.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Kazan Federal UniversityKazanRussia

Personalised recommendations