Hemodynamic Characteristics of Gold Nanoparticle Blood Flow Through a Tapered Stenosed Vessel with Variable Nanofluid Viscosity

  • Thanaa ElnaqeebEmail author
  • Nehad Ali Shah
  • Khaled S. Mekheimer


This paper presents a theoretical study of gold nanoparticle blood flow through a tapered blood vessel with an overlapping stenosis. The variable nanofluid viscosity depending on temperature is taken into account. The governing equations for steady incompressible fluid subject to the boundary conditions are solved analytically under mild stenosis assumptions. The results are presented graphically for pertinent flow and stenosis shape parameters. The results show that as the concentration of gold nanoparticles increases, velocity increases while resistance impedance decreases. The obtained results for Au blood flow model are compared with both Cu blood and TiO2 blood flow models. The results showed that the velocity values are higher in case of Au blood flow model than the other models. This indicates that gold nanoparticles can improve blood flow and enhance the hemodynamic performance in the stenosed blood vessel.


Gold nanoparticles Blood flow Variable viscosity Tapered stenosed vessel 



  1. 1.
    Rashidi, S., Akar, S., Bovand, M., & Ellahi, R. (2018). Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still. Renewable Energy, 115, 400–410.CrossRefGoogle Scholar
  2. 2.
    Ijaz, N., Zeeshan, A., Bhatti, M. M., & Ellahi, R. (2018). Analytical study on liquid-solid particles interaction in the presence of heat and mass transfer through a wavy channel. Journal of Molecular Liquids, 250, 80–87.CrossRefGoogle Scholar
  3. 3.
    Ur Rehman, F., & Nadeem, S. (2018). Heat transfer analysis for three-dimensional stagnation-point flow of water-based nanofluid over an exponentially stretching surface. Journal of Heat Transfer, 140, 052401–052407.CrossRefGoogle Scholar
  4. 4.
    Zeeshan, A., Shehzad, N., & Ellahi, R. (2018). Analysis of activation energy in Couette-Poiseuille flow of nanofluid in the presence of chemical reaction and convective boundary conditions. Results in Physics, 8, 502–512.CrossRefGoogle Scholar
  5. 5.
    Ellahi, R., Zeeshan, A., Shehzad, N., & Alamri, S. Z. (2018). Structural impact of kerosene-Al2O3 nanoliquid on MHD Poiseuille flow with variable thermal conductivity: Application of cooling process. Journal of Molecular Liquids, 264, 607–615.CrossRefGoogle Scholar
  6. 6.
    Akbarzadeh, M., Rashidi, S., Karimi, N., & Ellahi, R. (2018). Convection of heat and thermodynamic irreversibilities in two-phase, turbulent nanofluid flows in solar heaters by corrugated absorber plates. Advanced Powder Technology, 29, 2243–2254.CrossRefGoogle Scholar
  7. 7.
    Hussain, F., Ellahi, R., & Zeeshan, A. (2018). Mathematical models of electro-magnetohydrodynamic multiphase flows synthesis with nano-sized hafnium particles. Applied Sciences, 8, 275.CrossRefGoogle Scholar
  8. 8.
    Shehzad, N., Zeeshan, A., & Ellahi, R. (2018). Electroosmotic flow of MHD power law Al 2 O 3 -PVC nanofluid in a horizontal channel: Couette-Poiseuille flow model. Communications in Theoretical Physics, 69, 655.CrossRefGoogle Scholar
  9. 9.
    Zeeshan, A., Ijaz, N., Abbas, T., & Ellahi, R. (2018). The sustainable characteristic of bio-bi-phase flow of peristaltic transport of MHD Jeffrey fluid in the human body. Sustainability, 10, 1–17.CrossRefGoogle Scholar
  10. 10.
    Milani Shirvan, K., Ellahi, R., Mamourian, M., & Moghiman, M. (2017). Effects of wavy surface characteristics on natural convection heat transfer in a cosine corrugated square cavity filled with nanofluid. International Journal of Heat and Mass Transfer, 107, 1110–1118.CrossRefGoogle Scholar
  11. 11.
    Ellahi, R., Tariq, M. H., Hassan, M., & Vafai, K. (2017). On boundary layer nano-ferroliquid flow under the influence of low oscillating stretchable rotating disk. Journal of Molecular Liquids, 229, 339–345.CrossRefGoogle Scholar
  12. 12.
    Milani Shirvan, K., Mamourian, M., Mirzakhanlari, S., & Ellahi, R. (2017). Numerical investigation of heat exchanger effectiveness in a double pipe heat exchanger filled with nanofluid: A sensitivity analysis by response surface methodology. Powder Technology, 313, 99–111.CrossRefGoogle Scholar
  13. 13.
    Esfahani, J. A., Akbarzadeh, M., Rashidi, S., Rosen, M. A., & Ellahi, R. (2017). Influences of wavy wall and nanoparticles on entropy generation over heat exchanger plat. International Journal of Heat and Mass Transfer, 109, 1162–1171.CrossRefGoogle Scholar
  14. 14.
    Sadaf, H., Akbar, M. U., & Nadeem, S. (2018). Induced magnetic field analysis for the peristaltic transport of non-Newtonian nanofluid in an annulus. Mathematics and Computers in Simulation, 148, 16–36.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Abbas, N., Saleem, S., Nadeem, S., Alderremy, A. A., & Khan, A. U. (2018). On stagnation point flow of a micro polar nanofluid past a circular cylinder with velocity and thermal slip. Results in Physics, 9, 1224–1232.CrossRefGoogle Scholar
  16. 16.
    Ur Rehman, F., Nadeem, S., Ur Rehman, H., & Ul Haq, R. (2018). Thermophysical analysis for three-dimensional MHD stagnation-point flow of nano-material influenced by an exponential stretching surface. Results in Physics, 8, 316–323.CrossRefGoogle Scholar
  17. 17.
    Akbar, N. S., & Nadeem, S. (2017). Double-diffusive natural convective peristaltic Prandtl flow in a porous channel saturated with a nanofluid. Heat Transfer Research, 48, 283–290.Google Scholar
  18. 18.
    Ur Rehman, A., Mehmood, R., Nadeem, S., Akbar, N. S., & Motsa, S. S. (2017). Effects of single and multi-walled carbon nano tubes on water and engine oil based rotating fluids with internal heating. Advanced Powder Technology, 28, 1991–2002.CrossRefGoogle Scholar
  19. 19.
    Rehman, A. U., Mehmood, R., & Nadeem, S. (2017). Entropy analysis of radioactive rotating nanofluid with thermal slip. Applied Thermal Engineering, 112, 832–840.CrossRefGoogle Scholar
  20. 20.
    Nadeem, S., & Sadaf, H. (2017). Exploration of single wall carbon nanotubes for the peristaltic motion in a curved channel with variable viscosity. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39, 117–125.CrossRefGoogle Scholar
  21. 21.
    Muhammad, N., & Nadeem, S. (2017). Ferrite nanoparticles Ni- ZnFe2O4 , Mn- ZnFe2O4 and Fe2O4 in the flow of ferromagnetic nanofluid. The European Physical Journal - Plus, 132, 377.CrossRefGoogle Scholar
  22. 22.
    Mehmood, R., Nadeem, S., Saleem, S., & Akbar, N. S. (2017). Flow and heat transfer analysis of Jeffery nano fluid impinging obliquely over a stretched plate. Journal of the Taiwan Institute of Chemical Engineers, 74, 49–58.CrossRefGoogle Scholar
  23. 23.
    Rehman, F. U., Nadeem, S., & Haq, R. U. (2017). Heat transfer analysis for three-dimensional stagnation-point flow over an exponentially stretching surface. Chinese Journal of Physics, 55, 1552–1560.CrossRefGoogle Scholar
  24. 24.
    Hayat, T., & Nadeem, S. (2017). Heat transfer enhancement with ag–CuO/water hybrid nanofluid. Results in Physics, 7, 2317–2324.CrossRefGoogle Scholar
  25. 25.
    Tabassum, R., Mehmood, R., & Nadeem, S. (2017). Impact of viscosity variation and micro rotation on oblique transport of Cu-water fluid. Journal of Colloid and Interface Science, 501, 304–310.CrossRefGoogle Scholar
  26. 26.
    Shahzadi, I., & Nadeem, S. (2017). Impinging of metallic nanoparticles along with the slip effects through a porous medium with MHD. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39, 2535–2560.CrossRefGoogle Scholar
  27. 27.
    Elnaqeeb, T., Mekheimer, K. S., & Alghamdi, F. (2016). Cu-blood flow model through a catheterized mild stenotic artery with a thrombosis. Mathematical Biosciences, 282, 135–146.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Mekheimer, K. S., Elnaqeeb, T., Kot, M. A. E., & Alghamdi, F. (2016). Simultaneous effect of magnetic field and metallic nanoparticles on a micropolar fluid through an overlapping stenotic artery: Blood flow model. Physics Essays, 29, 272–283.CrossRefGoogle Scholar
  29. 29.
    Ahmed, A., & Sohail, N. (2016). The study of (Cu, TiO2, Al2O3) nanoparticles as antimicrobials of blood flow through diseased arteries. Journal of Molecular Liquids, 216, 615–623.CrossRefGoogle Scholar
  30. 30.
    Akbar, N. S. (2016). Metallic nanoparticles analysis for the blood flow in tapered stenosed arteries: Application in nanomedicines. International Journal of Biomathematics, 9, 1650002.MathSciNetCrossRefGoogle Scholar
  31. 31.
    Nadeem, S., & Ijaz, S. (2015). Influence of metallic nanoparticles on blood flow through arteries having both stenosis and aneurysm. IEEE Transactions on Nanobioscience, 14, 668–679.CrossRefGoogle Scholar
  32. 32.
    Nadeem, S., & Ijaz, S. (2015). Single wall carbon nanotube (SWCNT) examination on blood flow through a multiple stenosed artery with variable nanofluid viscosity. AIP Advances, 5, 107217.CrossRefGoogle Scholar
  33. 33.
    Nadeem, S., Ijaz, S., & Sadiq, M. A. (2014). Inspiration of induced magnetic field on a blood flow of Prandtl nanofluid model with stenosis. Current Nanoscience, 10, 753–765.CrossRefGoogle Scholar
  34. 34.
    Ramana Reddy, J. V., Srikanth, D., & Das, S. K. (2017). Modelling and simulation of temperature and concentration dispersion in a couple stress nanofluid flow through stenotic tapered arteries. The European Physical Journal - Plus, 132, 365.CrossRefGoogle Scholar
  35. 35.
    Mekheimer, K. S., Mohamed, M. S., & Elnaqeeb, T. (2016). Metallic nanoparticles influence on blood flow through a stenotic artery. International Journal of Applied Mathematics, 107, 201–220.Google Scholar
  36. 36.
    Ijaz, S., & Nadeem, S. (2018). Consequences of blood mediated nano transportation as drug agent to attenuate the atherosclerotic lesions with permeability impacts. Journal of Molecular Liquids, 262, 565–575.CrossRefGoogle Scholar
  37. 37.
    Ijaz, S., Iqbal, Z., Maraj, E. N., & Nadeem, S. (2018). Investigation of cu-CuO/blood mediated transportation in stenosed artery with unique features for theoretical outcomes of hemodynamics. Journal of Molecular Liquids, 254, 421–432.CrossRefGoogle Scholar
  38. 38.
    Ijaz, S., & Nadeem, S. (2018). Transportation of nanoparticles investigation as a drug agent to attenuate the atherosclerotic lesion under the wall properties impact. Chaos, Solitons and Fractals, 112, 52–65.MathSciNetCrossRefGoogle Scholar
  39. 39.
    Ijaz, S. N. (2017). A balloon model examination with impulsion of cu-nanoparticles as drug agent through stenosed tapered elastic artery. Journal of Applied Fluid Mechanics, 10, 1773–1783.Google Scholar
  40. 40.
    Ijaz, S., & Nadeem, S. (2017). A biomedical solicitation examination of nanoparticles as drug agents to minimize the hemodynamics of a stenotic channel. The European Physical Journal Plus, 132, 448.CrossRefGoogle Scholar
  41. 41.
    Ijaz, S., Iqra, S., Nadeem, S., & Anber, S. (2017). A clot model examination: With impulsion of nanoparticles under influence of variable viscosity and slip effects. Communications in Theoretical Physics, 68, 667.CrossRefGoogle Scholar
  42. 42.
    Ijaz, S., & Nadeem, S. (2017). Biomedical theoretical investigation of blood mediated nanoparticles (Ag-Al2O3/blood) impact on hemodynamics of overlapped stenotic artery. Journal of Molecular Liquids, 248, 809–821.CrossRefGoogle Scholar
  43. 43.
    Ahmed, A., & Nadeem, S. (2017). Effects of magnetohydrodynamics and hybrid nanoparticles on a micropolar fluid with 6-types of stenosis. Results in Physics, 7, 4130–4139.CrossRefGoogle Scholar
  44. 44.
    Ahmed, A., & Nadeem, S. (2017). Biomathematical study of time-dependent flow of a Carreau nanofluid through inclined catheterized arteries with overlapping stenosis. Journal of Central South University, 24, 2725–2744.CrossRefGoogle Scholar
  45. 45.
    Versiani, A. F., Andrade, L. M., Martins, E. M., Scalzo, S., Geraldo, J. M., et al. (2016). Gold nanoparticles and their applications in biomedicine. Future Virology, 11, 293–309.CrossRefGoogle Scholar
  46. 46.
    Kharlamov, A. N., Tyurnina, A. E., Veselova, V. S., Kovtun, O. P., Shur, V. Y., & Gabinsky, J. L. (2015). Silica-gold nanoparticles for atheroprotective management of plaques: Results of the NANOM-FIM trial. Nanoscale, 7, 8003–8015.CrossRefGoogle Scholar
  47. 47.
    Szymański, P., Frączek, T., Markowicz, M., & Mikiciuk-Olasik, E. (2012). Development of copper based drugs, radiopharmaceuticals and medical materials. Biometals, 25, 1089–1112.CrossRefGoogle Scholar
  48. 48.
    Imani, R., Kralj-Iglič, V., & Iglič, A. (2016). Chapter seven - TiO2 nanostructures in biomedicine. In A. Iglič, C. V. Kulkarni, & M. Rappolt (Eds.), Advances in biomembranes and lipid self-assembly (Vol. 24, pp. 163–207).Google Scholar
  49. 49.
    Mekheimer, K. S., Haroun, M. H., & El Kot, M. A. (2011). Induced magnetic field influences on blood flow through an anisotropically tapered elastic artery with overlapping stenosis in an annulus. Canadian Journal of Physics, 89, 201–212.CrossRefGoogle Scholar
  50. 50.
    Nadeem, S., Haq, U. R., & Khan, Z. H. (2014). Heat transfer analysis of water-based nanofluid over an exponentially stretching sheet. Alexandria Engineering Journal, 53, 219–224.CrossRefGoogle Scholar
  51. 51.
    Srivastava, V. P., & Saxena, M. (1997). Suspension model for blood flow through stenotic arteries with a cell-free plasma layer. Mathematical Biosciences, 139, 79–102.CrossRefGoogle Scholar
  52. 52.
    Young, D. F. (1968). Effect of a time-dependent stenosis on flow through a tube. Journal of Engineering for Industry, 90, 248–254.CrossRefGoogle Scholar
  53. 53.
    Hakeem, A. E. A. E., Misiery, A. E. M. E., & Shamy, I. I. E. (2003). Hydromagnetic flow of fluid with variable viscosity in a uniform tube with peristalsis. Journal of Physics A: Mathematical and General, 36, 8535.MathSciNetCrossRefGoogle Scholar
  54. 54.
    Nadeem, S., & Ijaz, S. (2015). Theoretical analysis of metallic nanoparticles on blood flow through tapered elastic artery with overlapping stenosis. IEEE Transactions on Nanobioscience, 14, 417–428.CrossRefGoogle Scholar
  55. 55.
    Das, S. (2015). Nanofluids for heat transfer: An analysis of thermophysical properties. IOSR Journal of Applied Physics, 7, 34–40.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Thanaa Elnaqeeb
    • 1
    Email author
  • Nehad Ali Shah
    • 2
    • 3
  • Khaled S. Mekheimer
    • 4
  1. 1.Department of Mathematics, Faculty of ScienceZagazig UniversityZagazigEgypt
  2. 2.Department of MathematicsLahore Leads UniversityLahorePakistan
  3. 3.Abdus Salam School of Mathematical SciencesGC UniversityLahorePakistan
  4. 4.Department of Mathematics, Faculty of ScienceAl-Azhar UniversityNasr CityEgypt

Personalised recommendations