, Volume 9, Issue 1, pp 186–202 | Cite as

Concurrent Development of Thermal Energy with Magnetic Field on a Particle-Fluid Suspension Through a Porous Conduit

  • I. M. Eldesoky
  • Sara I. AbdelsalamEmail author
  • W. A. El-Askary
  • M. M. Ahmed


The impact of heat transfer on the magnetohydrodynamic peristaltically induced motion in a channel through porous medium has been investigated. The continuity, momentum, and energy equations have been utilized to represent the flow in a closed form. These non-linear governing equations are solved analytically by employing the perturbation method. The obtained expressions for streamlines, temperature, and heat transfer coefficient are presented through graphs for two dimensions with a small wave number. The variations of physical variables with the pertinent parameters have been presented and discussed. It has been found that the inclusion of fluid suspension brought about a decrease in the temperature distribution. The effect of magnetic field on the temperature of fluid has also been seen to depend upon the position and time.


Heat transfer Porous medium MHD Particle suspension Peristalsis 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Latham, T. W. (1966). Fluid motions in peristaltic pump, MS Thesis, MIT, Cambridge, Massachussetts.Google Scholar
  2. 2.
    Shapiro, A. H., Jaffrin, M. Y., & Weinberg, S. L. (1969). Peristaltic pumping with long wave length at low Reynolds number. Journal of Fluid Mechanics, 37(4), 799–825.Google Scholar
  3. 3.
    Abdelsalam, S. I., & Bhatti, M. M. (2018). The study of non-Newtonian Nanofluid with hall and ion slip effects on peristaltically induced motion in a Non-Uniform Channel. RSC Advances, 8, 7904–7915.CrossRefGoogle Scholar
  4. 4.
    Abdelsalam, S. I., & Bhatti, M. M. (2018). The impact of impinging TiO2 nanoparticles in Prandtl nanofluid along with endoscopic and variable magnetic field effects on peristaltic blood flow. Multidiscipline Modeling in Materials and Structures, 14(3), 530–548.Google Scholar
  5. 5.
    Abdelsalam, S. I., & Vafai, K. (2017). Combined effects of magnetic field and rheological properties on the peristaltic flow of a compressible fluid in a microfluidic channel. European Journal of Mechanics B/Fluids, 65, 398–411.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Srivastava, L. M., & Srivastava, V. P. (1989). Peristaltic transport of a particle-fluid suspension. Journal of Biomechanics, 111, 157–165.Google Scholar
  7. 7.
    Mekheimer, K. S. (1998). Peristaltic motion of a particle-fluid suspension in a planar channel. International Journal Theoretical Physics, 37, 2895–2920.CrossRefzbMATHGoogle Scholar
  8. 8.
    Mekheimer, K. S., & Abd Elmaboud, Y. (2008). The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: Application of an endoscope. Physics Letter A, 372, 1657–1665.CrossRefzbMATHGoogle Scholar
  9. 9.
    Ogulu, A. (2006). Effect of heat generation on low Reynolds number fluid and mass transport in a single lymphatic blood vessel with uniform magnetic field. International Communication Heat Mass Transfer, 33, 790–799.CrossRefGoogle Scholar
  10. 10.
    Srinivas, S., & Kothandapani, M. (2008). Peristaltic transport in an asymmetric channel with heat transfer. International Communication Heat and Mass Transfer, 35, 514–522.CrossRefzbMATHGoogle Scholar
  11. 11.
    Vajravelu, K., Radhakrishnamacharya, G., & Radhakrishna, V. (2007). And Murty," peristaltic flow and heat transfer in a vertical annulus, with long wave approximation". International Journal Nonlinear Mechanics, 42, 754–759.CrossRefzbMATHGoogle Scholar
  12. 12.
    Radhakrishnamacharya, G., & Srinivasulu, C. (2007). Influence of wall properties on peristaltic transport with heat transfer. Comptes Rendus Mecanique, 335, 369–373.CrossRefzbMATHGoogle Scholar
  13. 13.
    Abdelsalam, S. I., & Vafai, K. (2017). Particulate suspension effect on peristaltically induced unsteady pulsatile flow in a narrow artery: Blood flow model. Mathematical Biosciences, 283, 91–105.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Eldesoky, I. M., Abdelsalam, S. I., Abumandour, R. M., Kamel, M. H., & Vafai, K. (2017). Peristaltic transport of a compressible liquid with suspended particles in a Planar Channel. Journal of Applied Mathematics and Mechanics, 38(1), 137–154.CrossRefzbMATHGoogle Scholar
  15. 15.
    Hassan, M., Marin, M., Alsharif, A., & Ellahi, R. (2018). Convection heat transfer flow of nanofluid in a porous medium over wavy surface. Physics Letters A, 382(38), 2749–2753.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kothandapani, M., & Srinivas, S. (2008). On the influence of wall properties in the MHD peristaltic transport with heat transfer and porous medium. Physics Letter A, 372, 4586–4591.CrossRefzbMATHGoogle Scholar
  17. 17.
    Mishra, M., & Rao, A. R. (2003). Peristaltic transport of a Newtonian fluid in an asymmetric channel. Zeitschrift für angewandte Mathematik und Physik ZAMP, 54(3), 532–550.Google Scholar
  18. 18.
    Kothandapani, M., & Srinivas, S. (2008). Peristaltic transport of a Jeffrey fluid under the effect of magnetic field in an asymmetric channel. International Journal Nonlinear Mechanics, 43, 915–924.CrossRefGoogle Scholar
  19. 19.
    Ganji, D. D., & Rajabi, A. (2006). Assessment of homotopy-perturbation and perturbation methods in heat radiation equations. International Communications in Heat Mass Transfer, 33, 391–400.CrossRefGoogle Scholar
  20. 20.
    Elshehawey, E. F., Eladabe, N. T., Elghazy, E. M., & Ebaid, A. (2006). Peristaltic transport in an asymmetric channel through a porous medium. Applied Mathematics and Computation, 182, 140–150.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hayat, T., Hussain, Q., & Ali, N. (2008). Influence of partial slip on the peristaltic flow in a porous medium. Physica A, 387, 3399–3409.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Nandeppanavar, M. M., Abel, M. S., & Tawade, J. (2010). Heat transfer in a Walter's B fluid over an impermeable stretching sheet with non-uniform heat source/sink and elastic deformation. Communication Nonlinear Science Numerical Simulation, 15, 1791–1802.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Postelnicu, A. (2004). Influence of a magnetic field on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects. International Journal Heat Mass Transfer, 47, 1467–1472.CrossRefzbMATHGoogle Scholar
  24. 24.
    Bég, O. A., Bakier, A. Y., & Prasad, V. R. (2009). Numerical study of free convection magnetohydrodynamic heat and mass transfer from a stretching surface to a saturated porous medium with Soret and Dufour effects. Computer Material Science, 46, 57–65.CrossRefGoogle Scholar
  25. 25.
    Srinivas, S., Muthuraj, R., & Sakina, J. (2012). A note on the influence of heat and mass transfer on a peristaltic flow of a viscous fluid in a vertical asymmetric channel with wall slip. Chemical Industry and Chemical Engineering, 10, 28–30.Google Scholar
  26. 26.
    Srinivas, S., Gayathri, R., & Kothandapani, M. (2011). Mixed convective heat and mass transfer in an asymmetric channel with peristalsis. Communication Nonlinear Science Numerical Simulation, 16, 1845–1862.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Eldabe, N. T., El-Sayed, M. F., Ghaly, A. Y., & Sayed, H. M. (2008). Mixed convective heat and mass transfer in a non-Newtonian fluid at a peristaltic surface with temperature-dependent viscosity. Archive of Applied Mechanics, 78, 599–624.CrossRefzbMATHGoogle Scholar
  28. 28.
    Hayat, T., & Hina, S. (2010). The influence of wall properties on the MHD peristaltic flow of a Maxwell fluid with heat and mass transfer. Nonlinear Analysis Real World Applied, 11, 3155–3269.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Akbar, N. S., Nadeem, S., Hayat, T., & Hendi, A. A. (2011). Effects of heat and mass transfer on the peristaltic flow of hyperbolic tangent fluid in an annulus. International Journal Heat Mass Transfer, 54, 4360–4369.CrossRefzbMATHGoogle Scholar
  30. 30.
    Nadeem, S., & Akbar, N. S. (2011). Influence of heat and mass transfer on the peristaltic flow of a Johnson Segalman fluid in a vertical asymmetric channel with induced MHD. Journal Taiwan Institute Chemical Eng., 42, 58–66.CrossRefGoogle Scholar
  31. 31.
    Hayat, T., & Hina, S. (2010). The influence of wall properties on the MHD peristaltic flow of a Maxwell fluid with heat and mass transfer. Nonlinear Analysis: Real World Applications, 11, 3155–3169.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Elkoumy, S. R., Barakat, E. I., & Abdelsalam, S. I. (2013). Hall and transverse magnetic field effects on peristaltic flow of a Maxwell fluid through a porous medium. Global Journal of Pure and Applied Mathematics, 9(2), 187–203.Google Scholar
  33. 33.
    Mekheimer, K. S., Elkomy, S. R., & Abdelsalam, S. I. (2013). Simultaneous effects of magnetic field and space porosity on compressible Maxwell fluid transport induced by a surface acoustic wave in a microchannel. Chinese Physics B, 22(2), 124702–1–10.Google Scholar
  34. 34.
    Elkoumy, S. R., Barakat, E. I., & Abdelsalam, S. I. (2012). Hall and porous boundaries effects on peristaltic transport through porous medium of a Maxwell model. Transport in Porous Media, 94(3), 643–658.MathSciNetCrossRefGoogle Scholar
  35. 35.
    Ellahi, R., Alamri, S. Z., Basit, A., & Majid, A. (2018). Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. Journal of Taibah University for Science, 12(4), 476–482.CrossRefGoogle Scholar
  36. 36.
    Bhatti, M. M., Zeeshan, A., Ellahi, R., & Shit, G. C. (2018). Mathematical modeling of heat and mass transfer effects on MHD peristaltic propulsion of two-phase flow through a Darcy-brinkman-Forchheimer porous medium. Advanced Powder Technology, 29(5), 1189–1197.CrossRefGoogle Scholar
  37. 37.
    Khan, A. A., Masood, F., Ellahi, R., & Bhatti, M. M. (2018). Mass transport on chemicalized fourth-grade fluid propagating peristaltically through a curved channel with magnetic effects. Journal of Molecular Liquids, 258, 186–195.CrossRefGoogle Scholar
  38. 38.
    Bhatti, M. M., Zeeshan, A., Tripathi, D., & Ellahi, R. (2018). Thermally developed peristaltic propulsion of magnetic solid particles in biorheological fluids. Indian Journal of Physics, 92(4), 423–430.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Basic Engineering Sciences Department, Faculty of EngineeringMenoufia UniversityShebin El KomEgypt
  2. 2.Basic Science, Faculty of EngineeringThe British University in EgyptCairoEgypt
  3. 3.Mechanical Power Engineering Department, Faculty of EngineeringMenoufiya UniversityShebin El-KomEgypt

Personalised recommendations