Antioxidant, Antitumor, Antimicrobial Activities Evaluation of Musa paradisiaca L. Pseudostem Exudate Cultivated in Saudi Arabia

  • T. M. Abdel GhanyEmail author
  • Magdah Ganash
  • M. M. Alawlaqi
  • Aisha M. H. Al-Rajhi


The current study was designed to evaluate the therapeutic benefits of Musa paradisiaca L. pseudostem exudate including antioxidant, antitumor, and antimicrobial activities in vitro. Antioxidant activity determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging system. Antitumor activity performed on hepatocellular carcinoma (HepG-2) and human colon carcinoma (HCT-116), the antiviral activity of exudate was determined using cytopathic effect assay. Exudate showed good antioxidant activity where the value of IC50 was 2.2 μl. Antitumor activity reveals that the exudate is a good antitumor source with IC50 29.4 μl and 29.4 μl for HepG-2 and HCT-116 cell lines respectively. Exudate at 100 μl exhibited the highest cytotoxicity towards HCT-116 and HepG-2 cell line with inhibition 86.53and 79.06% respectively. From the obtained results, we could infer that the exudate does not have any antifungal effect on Aspergillus fumigatus (RCMB 002008), Candida albicans RCMB 005003, Candida tropicalis RCMB 005004 (1), Cryptococcus neoformas RCMB 0049001, Microsporum canis (RCMB 0834), and Trichophyton mentagrophytes (RCMB 0925) while antibacterial activity was observed on tested Gr + ve and Gr˗ve bacteria. Cytopathic effect exhibited weak antivirus against hepatitis A virus, while showing no antiviral against herpes simplex virus. Phytochemical screening confirmed the presence of active compounds like alkaloids, flavanoids, anthraquinone, cardiac glycoside, and phlobotannins in the pseudostem exudate of M. paradisiacal L. Altogether, these results suggest that the pseudostem exudate could be used as a potential antioxidant along with its antitumor and antibacterial agent.


Phytochemical Musa paradisiaca L. Antimicrobial activity Antitumor activity Antioxidant 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Shadma, A., Sundaram, S., & Rai, G. K. (2014). Nutraceutical application and value addition of banana peel: a review. International Journal of Pharmacy and Pharmaceutical Sciences, 6, 81–85.Google Scholar
  2. 2.
    Sharma, M., Patel, S., Narayan, S., Rajender, S., & Singh, S. P. (2017). Biotransformation of banana pseudostem extract into a functional juice containing value added biomolecules of potential health benefits. Indian Journal of Experimental Biology,55, 453–462.Google Scholar
  3. 3.
    Imam, M. Z., & Akter, S. (2011). Musa paradisiaca L. and Musa sapientum L: a phytochemical and pharmacological review. Journal of Applied Pharmaceutical Science, 1, 14–20.Google Scholar
  4. 4.
    Tsamo, C. V. P., Herent, M., Tomekpe, K., Emaga, T. H., Quetin-Leclercq, J., Rogez, H., Larondelle, Y., & Andre, C. (2015). Phenolic profiling in the pulp and peel of nine plantain cultivars (Musa sp.). Food Chemistry, 15, 197–204.Google Scholar
  5. 5.
    Santiago-Blay, J. A., Lambert, J. B. (2010). Legumes and their exudates. Aridus (Bulletin of the Desert Legume Program of the Boyce Thompson Southwestern Arboretum and the University of Arizona), 22(1), 1 Google Scholar
  6. 6.
    Abdel Ghany, T. M., Ganash, M. A., Bakri M. M., Al-Rajhi, A. M. H., Mohamed, A., Abboud A. l. (2016). Evaluation of natural sources for repress cytotoxic Trichothecenes and Zearalenone production with using Enzyme-linked immunosorbent assay. Life Science Journal ,13(8), 74–86.Google Scholar
  7. 7.
    Lambert, P. R., Nguyen, S., Maxwell, K. S., Tucci, D. L., Lustig, L. R., Fletcher, M., Bear, M., & Lebel, C. (2012). A randomized, double-blind, placebo-controlled clinical study to assess safety and clinical activity of OTO-104 given as a single intratympanic injection in patients with unilateral Ménière’s disease. Otology & Neurotology, 33, 1257–1265.CrossRefGoogle Scholar
  8. 8.
    Asuquo, E. G., & Udobi, C. E. (2016). Antibacterial and toxicity studies of the ethanol extract of Musa paradisiaca leaf. Cogent Biology, 2, 1219248.CrossRefGoogle Scholar
  9. 9.
    Chabuck, Z. A. G., Al-Charrakh, A. H., Hindi, N. K. K., & Hindi, S. K. K. (2013). Antimicrobial effect of aqueous banana peel extract, Iraq. Iraqi Journal of Pharmaceutical Sciences, 1, 73–75.Google Scholar
  10. 10.
    Kongkachuichai, R., Charoensiri, R., & Sungpuag, P. (2010). Carotenoid, flavonoid profiles and dietary fiber contents of fruits commonly consumed in Thailand. International Journal of Food Sciences and Nutrition, 61(5), 536–548.CrossRefGoogle Scholar
  11. 11.
    Lim, Y. Y., Lim, T. T., & Tee, J. J. (2007). Antioxidant properties of several tropical fruits: a comparative study. Food Chemistry, 103(3), 1003–1008.CrossRefGoogle Scholar
  12. 12.
    Habsah, A., Juferi, I., Mohibah, M., Halim, K., & Hamid, K. (2013). A preliminary study of banana stem juice as a plant-based coagulant for treatment of spent coolant wastewater. Journal of Chemistry, 2013, ID 165057, 7. Scholar
  13. 13.
    Mohorcic, M., Friedrich, J., Renimel, I., Andre, P., Mandin, D., & Chaumont, J. P. (2007). Production of melanin bleaching enzyme of fungal origin and its application in cosmetics. Biotechnology and Bioprocess Engineering, 12, 200–206.CrossRefGoogle Scholar
  14. 14.
    Yadav, P., Singh, V. K., Yadav, M., Singh, S. K., Yadava, S., & Yadav, K. D. (2012). Purification and characterization of Mn-peroxidase from Musa paradisiacal (banana) stem juice. Indian Journal of Biochemistry & Biophysics, 49, 42–48.Google Scholar
  15. 15.
    Prasad, K. V., Bharathi, K., & Srinivasan, K. K. (1993). Evaluation of musa (paradisiaca Linn. cultivar) – “putiubale” stem mice for antilitiiiatic activity in albino rats. Indian Journal of Physiology and Pharmacology, 37, 337–334.Google Scholar
  16. 16.
    Vernwal, S. K., Yadav, R. S., & Yadav, K. D. (2000). Musa paradisiaca stem juice as a source of peroxidase and ligninperoxidase. Indian Journal of Experimental Biology, 38, 1036–1040.Google Scholar
  17. 17.
    Carabelly, A. N., Suhartono, T. P., & dan Ketut, S. (2017). The toxicity of methanol extract of mauli banana stem (Musa acuminata) against bone marrow mesenchymal stem cell in vitro. Jurnal Kedokteran Gigi, 2, 24–28.Google Scholar
  18. 18.
    Ighodaro, O. M. (2012). Evaluation study on Nigerian species of Musa paradisiac peels: phytochemical screening, proximate analysis, mineral composition and antimicrobial activities. Research, 4, 17–20.Google Scholar
  19. 19.
    Agarwal, P. K., Singh, A., Gaurav, K., Goel, S., Khanna, H. D., & Goel, R. K. (2009). Evaluation of wound healing activity of extracts of plantain banana (Musa sapientum Var. Paradisiaca) in rats. Indian Journal of Experimental Biology, 47, 32–40.Google Scholar
  20. 20.
    Ojewole, J. A., & Adewunmi, C. O. (2003). Hypoglycemic effect of methanolic extract of Musa paradisiaca (Musaceae) green fruits in normal and diabetic mice. Methods and Findings in Experimental and Clinical Pharmacology, 25, 453–456.CrossRefGoogle Scholar
  21. 21.
    Krishnan, K., & Vijayalakshmi, N. R. (2005). Alterations in lipids & lipid peroxidation in rats fed with flavonoid rich fraction of banana (Musa paradisiaca) from high background radiation area. The Indian Journal of Medical Research, 122, 540–546.Google Scholar
  22. 22.
    Houghton, P. J., & Skari, K. (1992). The effect of Indian plants used against snakebite on blood clotting. The Journal of Pharmacy and Pharmacology, 44, 1054–1060.Google Scholar
  23. 23.
    Harbone, J. B. (1998). Phytochemical Methods, A Guide to Modern Techniques of Plant Analysis (3rd ed.). London: Chapman & Hall.Google Scholar
  24. 24.
    Yen, G. C., & Duh, P. D. (1994). Scavenging effect of methanolic extracts of peanut hulls on free radical and active oxygen species. Journal of Agricultural and Food Chemistry, 42, 629–632.CrossRefGoogle Scholar
  25. 25.
    Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63.CrossRefGoogle Scholar
  26. 26.
    Hu, J. M., & Hsiung, G. D. (1989). Evaluation of new antiviral agents. I. In vitro perspectives. Antiviral Research, 11, 217–232.CrossRefGoogle Scholar
  27. 27.
    Vijayan, P., Raghu, C., Ashok, G., Dhanaraj, S. A., & Suresh, B. (2004). Antiviral activity of medicinal plants of Nilgiris. The Indian Journal of Medical Research, 120, 24–29.Google Scholar
  28. 28.
    Ogbonna, O. A., Izundu, A. I., Okoye, N. H., & Ikeyi, A. P. (2016). Phytochemical compositions of fruits of three Musa species at three stages of development. IOSR Journal of Pharmacy and Biological Sciences, 11, 48–59.CrossRefGoogle Scholar
  29. 29.
    Amutha, K., & Selvakumari, U. (2016). Wound healing activity of methanolic stem extract of Musa paradisiaca Linn. (banana) in Wistar albino rats. International Wound Journal, 13, 763–767.CrossRefGoogle Scholar
  30. 30.
    Ilesanmi, T., & Adeyi, A. (2017). Extraction and ohysico-chemical characterization of plantain (musa spp) exudates. Journal of Physical and Chemical Sciences, 5, 1–5.Google Scholar
  31. 31.
    Andrade, R. G., Dalvi, L. T., Silva, J. M. C., Lopes, G. K. B., Alonso, A., & Hermes-Lima, M. (2005). The antioxidant effect of tannic acid on the in vitro copper-mediated formation of free radicals. Archive of Biochemistry and Biophysics, 437(1), 1–9.Google Scholar
  32. 32.
    Padam, B. S., Tin, H. S., Chye, F. Y., & Abdullah, M. I. (2012). Antibacterial and antioxidative activities of the various solvent extracts of banana (Musa paradisiaca cv. Mysore) inflorescences. Journal of Biological Sciences, 12, 62–73.CrossRefGoogle Scholar
  33. 33.
    Saravanan, K., & Aradhya, S. M. (2011a). Polyphenols of pseudostem of different banana cultivars and their antioxidant activities. Journal of Agricultural and Food Chemistry, 59, 3613–3623.CrossRefGoogle Scholar
  34. 34.
    Ponmurugan, K., & Muhammed, M. (2013). Antibacterial and antioxidant activities of Musa sp. leaf extracts against multidrug resistant clinical pathogens causing nosocomial infection. Asian Pacific Journal of Tropical Biomedicine, 3, 737–742.CrossRefGoogle Scholar
  35. 35.
    Saravanan, K., & Aradhya, S. M. (2011b). Potential nutraceutical food beverage with antioxidant properties from banana plant bio-waste (pseudostem and rhizome). Food & Function, 2, 603–610.CrossRefGoogle Scholar
  36. 36.
    Abdel Ghany, T. M., & Othman, M. H. (2014). Juniperus procera as food safe additive, their antioxidant, anticancer and antimicrobial activity against some food-borne Bacteria. Journal of Biological and Chemical Research, 31, 668–677.Google Scholar
  37. 37.
    Abdel Ghany, T. M. (2014). Eco-friendly and safe role of Juniperus procera in controlling of fungal growth and secondary metabolites. Journal of Plant Pathology & Microbiology, 5, 231.Google Scholar
  38. 38.
    Abdelghany, T. M., Al-Rajhi, A. M. H., Mohamed, A. A. A., Alawlaqi, M. M., Ganash Magdah, A., Helmy, E. A. M., & Ahmed, S. M. (2018). Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. A review. BioNanoScience, 8(1), 5–16. Scholar
  39. 39.
    Saad, S. D., Mohamad, T. A., Yasser, M. T., & Amin, S. A. M. (2015). Antioxidant activities and anticancer screening of extracts from banana fruit (Musa sapientum). Academic Journal of Cancer Research, 8, 28–34.Google Scholar
  40. 40.
    Onyema, C. T., Ofor, C. E., Okudo, V. C., & Ogbuagu, A. S. (2016). Phytochemical and antimicrobial analysis of banana pseudo stem (Musa acuminata). British Journal of Pharmaceutical Research, 10, 1–9.Google Scholar
  41. 41.
    Priya, R. K., Sarika, S., Kunal, K. S., Chetan, M., & Pravdeep, S. T. (2014). Study of antioxidant and antimicrobial properties, phytochemical screening and analysis of sap extracted from banana (Musa acuminata) pseudostem. International Journal of Advanced Biotechnology and Research, 5, 649–658.Google Scholar
  42. 42.
    Sampath, K. K. P., Bowmic, D., Duraivel, S., & Umadevi, M. (2012). Traditional and medicinal uses of banana. Journal of Pharmacognosy and Phytochemistry, 1, 51–63.Google Scholar
  43. 43.
    Singh, B., & Bhat, T. K. (2003). Potential therapeutic applications of some antinutritional plant secondary metabolites. Journal of Agriculture and Food Chemistry, 51, 5579–5597.CrossRefGoogle Scholar
  44. 44.
    Magdah, G., & Sultan, Q. (2018). Phenolic acids and biological activities of Coleus forskohlii and Plectranthus barbatus as traditional medicinal plants. International Journal of Pharmacology, 14, 856–865.Google Scholar
  45. 45.
    Abdelghany, T. M. (2015). Safe food additives: a review. Journal of Biological and Chemical Research, 32, 402–437.Google Scholar
  46. 46.
    Abdelghany, T. M., El-Naggar, M. A., Ganash, M. A., & Al Abboud, M. A. (2017). PCR identification of Aspergillus niger with using natural additives for controlling and detection of malformins and maltoryzine production by HPLC. BioNanoScience, 7, 588–596.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
corrected publication December/2018

Authors and Affiliations

  • T. M. Abdel Ghany
    • 1
    • 2
    Email author
  • Magdah Ganash
    • 3
  • M. M. Alawlaqi
    • 1
  • Aisha M. H. Al-Rajhi
    • 4
  1. 1.Biology Department, Faculty of ScienceJazan UniversityJazanSaudi Arabia
  2. 2.Botany and Microbiology Department, Faculty of ScienceAl-Azhar UniversityCairoEgypt
  3. 3.Biology Department, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Biology Department, Faculty of SciencePrincess Nora Bent Abdularahman UniversityRiyadhSaudi Arabia

Personalised recommendations