Advertisement

BioNanoScience

, Volume 9, Issue 1, pp 215–223 | Cite as

Bio-restoration of Oxygen from Demountable Nanoparticles

  • Slah HidouriEmail author
  • Salah Ammar
Article
  • 21 Downloads

Abstract

At cell scale, metabolic energy maintains the living mechanisms running, the major source is resuming by an electronic perturbation that wakes up the whole processes responsible for life. Between the generations of electron to its final acceptor usually, the oxygen, many electron-transporters are involved. Among them the quinines that worked with different valence states of the same metals especially iron to fulfill the cell demand in oxygen and/or collection of electrons to assist the electron transporters. The review talks about the possible intervention by nanomaterials as a source of bio-energy, when the system of respiration is broken and the final acceptor of electron is weak, under hard conditions, to restore bio-respiration and reanimates the collapsed mechanisms. This particular intervention recuperates and extends the respiration, the key of life, for some additional times when all source of oxygen are down and no swinging of electrons between the generators, transporters, and final acceptors of electrons in cell respiration.

Keywords

Biodegradation Lysis of nanoparticles Electrons collector Oxygen supply Survival entities 

Notes

Compliance with Ethical Standards

Conflict of Interest

The author declares that there is no conflict of interest regarding the publication of this document.

Author Disclosure Statement

No competing financial interests exist.

References

  1. 1.
    Agharkar, M., Kochrekar, S., Hidouri, S., & Azeez, M. A. (2014). Trends in green reduction of graphene oxides, issues and challenges: a review. Materials Research Bulletin, 59, 323–328.CrossRefGoogle Scholar
  2. 2.
    AshaRani, P. V., Mun, G. L. K., Hande, M. P., & Valiyaveettil, S. (2009). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 3(2), 279–290.CrossRefGoogle Scholar
  3. 3.
    Berg, J. M., Tymoczko, J. L., & Stryer, L. (2002). The respiratory chain consists of four complexes: three proton pumps and a physical link to the citric acid cycle, biochemistry (5th ed.). New York: W H Freeman.Google Scholar
  4. 4.
    Carmeliet, P., Dor, Y., Herbert, J.-M., Fukumura, D., Brusselmans, K., Dewerchin, M., Neeman, M., Bono, F., Abramovitch, R., Maxwell, P., Koch, C. J., Ratcliffe, P., Moons, L., Jain, R. K., Collen, D., & Keshe, E. (1998). Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 394, 485–490.  https://doi.org/10.1038/28867.CrossRefGoogle Scholar
  5. 5.
    Chen, H., Tian, J., He, W., & Guo, Z. (2015, 2015). H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. Journal of the American Chemical Society, (137), 1539–1547.  https://doi.org/10.1021/ja511420n.
  6. 6.
    Chen, J., & Strous, M. (2013). Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution. Biochimica et Biophysica Acta, 1827, 136–144.CrossRefGoogle Scholar
  7. 7.
    Croissant, J. G., Fatieiev, Y., & Khashab, N. M. (2017). Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Advanced Materials, 2017(29), 1604634.  https://doi.org/10.1002/adma.201604634.CrossRefGoogle Scholar
  8. 8.
    De la Rosa, G., López-Moreno, M. L., Hernandez-Viezcas, J. A., Montes, M. O., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2011). Toxicity and biotransformation of ZnO nanoparticles in the desert plants Prosopis juliflora velutina, Salsola tragus and Parkinsonia florida. International Journal of Nanotechnology, 8(6), 492–506.CrossRefGoogle Scholar
  9. 9.
    El-Kemary, M., Nagy, N., & El-Mehasseb, I. (2013). Nickel oxide nanoparticles: synthesis and spectral studies of interactions with glucose. Materials Science in Semiconductor Processing, 16, 1747–1752.CrossRefGoogle Scholar
  10. 10.
    Fewell, M. P. (1995). The atomic nuclide with the highest mean binding energy. American Journal of Physics, 63(7), 653–658.  https://doi.org/10.1119/1.17828.CrossRefGoogle Scholar
  11. 11.
    Friemanm, J., Turner, M., & Huterer, D. (2008). Dark energy and the accelerating universe. Annual Review of Astronomy and Astrophysics, 46, 385–432.  https://doi.org/10.1146/annurev.astro.46.060407.145243.CrossRefGoogle Scholar
  12. 12.
    Geckil, H., Stark, B. C., & Webster, D. A. (2001). Cell growth and oxygen uptake of Escherichia coli and Pseudomonas aeruginosa are differently effected by the genetically engineered Vitreoscilla hemoglobin gene. Journal of Biotechnology, 85, 57–66.CrossRefGoogle Scholar
  13. 13.
    Ghobadi. (2013). Band gap determination using absorption spectrum fitting procedure. International Nano Letters 2013, 3, 2 http://www.inl-journal.com/content/3/1/2.CrossRefGoogle Scholar
  14. 14.
    Greijer, A. E., & Van der Wall, E. (2004). The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. Journal of Clinical Pathology, 57(10), 1009–1014.  https://doi.org/10.1136/jcp.2003.015032.CrossRefGoogle Scholar
  15. 15.
    Habraken, W. J., Tao, J., Brylka, L. J., Friedrich, H., Bertinetti, L., Schenk, A. S., Verch, A., Dmitrovic, V., Bomans, P. H., Frederik, P. M., Laven, J., van der Schoot, P., Aichmayer, B., De With, G., DeYoreo, J. J., & Sommerdijk, N. A. (2013). Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nature Communications, 4, 1507.  https://doi.org/10.1038/ncomms2490.CrossRefGoogle Scholar
  16. 16.
    Hatamie, A., Khan, A., Golabi, M., Turner, A. P. F., Beni, V., Mak, W. C., Sadollahkhani, A., Alnoor, H., Zargar, B., Bano, S., Nur, O., & Willander, M. (2015). Zinc oxide nanostructure-modified textile and its application to biosensing, photocatalysis, and as antibacterial material. Langmuir, 31, 10913–10921.  https://doi.org/10.1021/acs.langmuir.5b02341.CrossRefGoogle Scholar
  17. 17.
    Hidouri S., (2017). Possible domestication of uranium oxides using biological assistance reduction, Saudi Journal of Biological Sciences, 24(1), 2017, 1–10.  https://doi.org/10.1016/j.sjbs.2015.09.010
  18. 18.
    Hidouri, S., Ben Yohmes, M., & Landoulsi, A. (2016). Contribution of silver nanoparticles to extend Salmonella Typhimurium growth under various respiration regimes. Journal of Bioprocess and Biosystems Engineering, 39(10), 1635–1644.  https://doi.org/10.1007/s00449-016-1639-0.CrossRefGoogle Scholar
  19. 19.
    Hu, C.-J., Wang, L.-Y., Chodosh, L. A., Keith, B., & Simon, M. C. (2003). Differential roles of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in hypoxic gene regulation. Molecular and Cellular Biology, 23(24), 9361–9374.  https://doi.org/10.1128/MCB.23.24.9361-9374.2003.CrossRefGoogle Scholar
  20. 20.
    Hu, Z., Beuret, M., Khan, H., & Ariya, P. A. (2014). Development of a recyclable remediation system for gaseous BTEX: combination of iron oxides nanoparticles adsorbents and electrochemistry. ACS Sustainable Chemical Engineering, 2, 2739–2747.  https://doi.org/10.1021/sc500479b.CrossRefGoogle Scholar
  21. 21.
    Kim, K.-M., Kim, T.-H., Kim, H.-M., Kim, H.-J., Gwak, G.-H., Paek, S.-M., & Oh, J.-M. (2012). Colloidal behaviors of ZnO nanoparticles in various aqueous media. Toxicology and Environmental Health Sciences, 4(2), 121–131.  https://doi.org/10.1007/s13530-012-0126-5.CrossRefGoogle Scholar
  22. 22.
    Klotz, I. M. (2003). Hemoglobin–oxygen equilibria: retrospective and phenomenological perspective. Biophysical Chemistry, 100, 123–129.CrossRefGoogle Scholar
  23. 23.
    Lenihan, C. R., & Taylo, C. T. (2013). The impact of hypoxia on cell death pathways. Biochemical Society Transactions, 41, 657–663.  https://doi.org/10.1042/BST20120345.CrossRefGoogle Scholar
  24. 24.
    Levy, M., Luciani, N., Alloyeau, D., Elgrabli, D., Deveaux, V., Pechoux, C., Chat, S., Wang, G., Vats, N., Gendron, F., Factor, C., Lotersztajn, S., Luciani, A., Wilhelm, C., & Gazeau, F. (2011). Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials, 32, 3988–3999.  https://doi.org/10.1016/j.biomaterials.2011.02.031.CrossRefGoogle Scholar
  25. 25.
    Litvin, V. A., & Minaev, B. F. (2014). The size-controllable, one-step synthesis and characterization of gold nanoparticles protected by synthetic humic substances. Materials Chemistry and Physics, 144, 168–178.  https://doi.org/10.1016/j.matchemphys.2013.12.039.CrossRefGoogle Scholar
  26. 26.
    López-Moreno, M. L., de la Rosa, G., Hernández-Viezcas, J. A., Castillo-Michel, H., Botez, C. E., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2010). Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environmental Science Technology 1, 44(19), 7315–7320.  https://doi.org/10.1021/es903891g.CrossRefGoogle Scholar
  27. 27.
    Mafuné, F., Kohno, J., Takeda, Y., & Kondow, T. (2001). Dissociation and aggregation of gold nanoparticles under laser irradiation. The Journal of Physical Chemistry. B, 105(38), 9050–9056.  https://doi.org/10.1021/jp0111620.CrossRefGoogle Scholar
  28. 28.
    Mahdavi, M., Bin Ahmad, M., Haron, M. J., Namvar, F., Nadi, B., Ab-Rahman, M. Z., & Amin, J. (2013). Synthesis, surface modification and characterisation of biocompatible magnetic Iron oxide nanoparticles for biomedical applications. Molecules, 18, 7533–7548.  https://doi.org/10.3390/molecules18077533.CrossRefGoogle Scholar
  29. 29.
    Masoud, R., Bizouarn, T., Trepout, S., Wien, F., Baciou, L., Marco, S., & Levin, C. H. (2015). Titanium dioxide nanoparticles increase superoxide anion production by acting on NADPH oxidase. PLoS One, 10(12), e0144829.  https://doi.org/10.1371/journal.pone.0144829.CrossRefGoogle Scholar
  30. 30.
    Matsuyama, S., Llopis, J., Deveraux, Q. L., Tsien, R. Y., & Reed, J. C. (2000). Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nature Cell Biology, 2, 318–325.  https://doi.org/10.1038/35014006.CrossRefGoogle Scholar
  31. 31.
    Milichko, V. A., Nechaev, A. I., Valtsifer, V. A., Strelnikov, V. N., Kulchin, Y. N., & Dzyuba, V. P. (2013). Photo-induced electric polarizability of Fe3O4 nanoparticles in weak optical fields. Nanoscale Research Letters, 3(8), 317.CrossRefGoogle Scholar
  32. 32.
    Na, S.-H., & Park, C.-H. (2010). First-principles study of the surface energy and the atom cohesion of Wurtzite ZnO and ZnS - implications for nanostructure formation. Journal of the Korean Physical Society, 56(1), 498–502.  https://doi.org/10.3938/jkps.56.498.CrossRefGoogle Scholar
  33. 33.
    Niederberger, M. (2007). Nonaqueous Sol–Gel Routes to Metal Oxide Nanoparticles. Accounts of Chemical Research, 40, 793–800.CrossRefGoogle Scholar
  34. 34.
    Paris, J. L., Cabanas, M. V., Manzano, M., & Vallet-Regi, M. (2015). Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers. ACS Nano, 9(11), 11023–11033.  https://doi.org/10.1021/acsnano.5b04378.CrossRefGoogle Scholar
  35. 35.
    Ren, H., Liu, J., Li, Y., Wang, H., Ge, S., Yuan, A., Hua, Y., & Wua, J. (2017). Oxygen self-enriched nanoparticles functionalized with erythrocyte membranes for long circulation and enhanced phototherapy. Acta Biomaterialia, 59(2017), 269–282.CrossRefGoogle Scholar
  36. 36.
    Rollin-Genetet, F., Seidel, C., Artells, E., Auffan, M., Thiéry, A., & Vidaud, C. (2015). Redox reactivity of cerium oxide nanoparticles induces the formation of disulfide bridges in thiol-containing biomolecules. Chemical Research in Toxicology, 28(12), 2304–2312.  https://doi.org/10.1021/acs.chemrestox.5b00319.CrossRefGoogle Scholar
  37. 37.
    Sendoel, A., & Hengartner, M. O. (2014). Apoptotic cell death under hypoxia. Physiology, 29(3), 168–176.  https://doi.org/10.1152/physiol.00016.2013.CrossRefGoogle Scholar
  38. 38.
    Shenga, Y., Nesbitta, H., Callana, B., Taylorb, M. A., Lovec, M., McHalea, A. P., & Callana, J. F. (2017). Oxygen generating nanoparticles for improved photodynamic therapy of hypoxic tumours. Journal of Controlled Release, 264(2017), 333–340.CrossRefGoogle Scholar
  39. 39.
    Shi, Q., Zhang, P., Xia, Y. L. H., Wang, D., & Tao, X. (2015). Synthesis of open-mouthed, yolk–shell Au@AgPd nanoparticles with access to interior surfaces for enhanced electrocatalysis. Chemical Science, 6, 4350.  https://doi.org/10.1039/c5sc01088h.CrossRefGoogle Scholar
  40. 40.
    Sine, W. D., & Lee, B. H. (2009). Tilting at windmills? The environmental movement and the emergence of the U.S. Wind Energy Sector, Administrative Science Quarterly March 2009, 54(1), 123–155.  https://doi.org/10.2189/asqu.2009.54.1.123.Google Scholar
  41. 41.
    Soosen Samuel, M., Lekshmi, B., & George, K. C. (2009). Optical properties of ZnO nanoparticles. Academic Review, 57–65.Google Scholar
  42. 42.
    Srinivasulu T., Saritha K., Ramakrishna Reddy K.T. (2017) Synthesis and characterization of Fe-doped ZnO thin films deposited by chemical spray pyrolysis. Modern Electronic Materials (3) 76–85.  https://doi.org/10.1016/j.moem.2017.07.001
  43. 43.
    Sumathi N, (2017). Optical characterization of calcium oxide nanoparticles. International Journal of Advanced Technology in Engineering and Science 5(2)Google Scholar
  44. 44.
    Starowicz, M., Starowicz, P., Żukrowski, J., Przewoźnik, J., Lemański, A., Kapusta, C., & Banaś, J. (2011). Electrochemical synthesis of magnetic iron oxide nanoparticles with controlled size. Journal of Nanoparticle Research, 13(12), 7167–7176.  https://doi.org/10.1007/s11051-011-0631-5.CrossRefGoogle Scholar
  45. 45.
    Tan T.L., Lai C.W., and Abd Hamid S.B., (2014). Tunable band gap energy of Mn-Doped ZnO nanoparticles using the coprecipitation technique, Journal of Nanomaterials, Article ID 371720, doi: https://doi.org/10.1155/2014/371720.
  46. 46.
    Thanh, N. T. K., Maclean, N., & Mahiddine, S. (2014). Mechanisms of nucleation and growth of nanoparticles in solution. Chemical Reviews, 114, 7610–7630.  https://doi.org/10.1021/cr400544s.CrossRefGoogle Scholar
  47. 47.
    Thill, A., Zeyons, O., Spalla, O., Chauvat, F., Rose, J., Auffan, M., & Flank, A. M. (2006). Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environmental Science & Technology 1, 40(19), 6151–6156.CrossRefGoogle Scholar
  48. 48.
    Tsunoyama, H., Ichikuni, N., Sakurai, H., & Tsukuda, T. (2009). Effect of electronic structures of au clusters stabilized by poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. Journal of the American Chemical Society, 131(20), 7086–7093.  https://doi.org/10.1021/ja810045y.CrossRefGoogle Scholar
  49. 49.
    Turco Liveri, V., Rossi, M., D’Arrigo, G., Manno, D., & Micocci, G. (1999). Synthesis and characterization of ZnS nanoparticles in water/AOT/n-heptane microemulsions. Applied Physics A: Materials Science & Processing, 69, 369–373.  https://doi.org/10.1007/s003399900106.CrossRefGoogle Scholar
  50. 50.
    Wahab, R., Kim, Y.-S., & Shin, H.-S. (2009). Synthesis, characterization and effect of pH variation on zinc oxide nanostructures. Materials Transactions, 50(8), 2092–2097.  https://doi.org/10.2320/matertrans.M2009099.CrossRefGoogle Scholar
  51. 51.
    Xia, Y., Xiong, Y., Lim, B., & Skrabalak, S. E. (2009). Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angewandte Chemie (International Ed. in English), 48(1), 60–103.  https://doi.org/10.1002/anie.200802248.CrossRefGoogle Scholar
  52. 52.
    Yu, H., Sato, E. F., Nagata, K., Nishikawa, M., Kashiba, M., Arakawa, T., Kobayashi, K., Tamura, T., & Inoue, M. (1997). Oxygen-dependent regulation of the respiration and growth of Escherichia coli by nitric oxide. FEBS Letters, 409, 161–165.CrossRefGoogle Scholar
  53. 53.
    Zhang, P., Ma, Y., Zhang, Z., He, X., Zhang, J., Guo, Z., Tai, R., Zhao, Y., & Chai, Z. (2012). Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano, 6(11), 9943–9950.  https://doi.org/10.1021/nn303543n.CrossRefGoogle Scholar
  54. 54.
    Zhou, J., Xu, N., & Wang, Z. L. (2006). Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures. Advanced Materials, 18, 2432–2435.  https://doi.org/10.1002/adma.200600200.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Département de Chimie, Faculté des Sciences de BizerteUniversité de CarthageBizerteTunisia
  2. 2.Laboratoire de PhotovoltaïqueCentre de Recherche et des Technologies de l’énergieHammam-LifTunisia
  3. 3.Unité de recherche en Electrochimie, Matériaux et environnement UREME (UR17ES45), Faculté desSciences de GabèsUniversité de GabèsGabèsTunisia

Personalised recommendations