Advertisement

BioNanoScience

, Volume 9, Issue 1, pp 96–104 | Cite as

Synthesis and Characterization of Nano Selenium Using Plant Biomolecules and Their Potential Applications

  • Hammad Alam
  • Nafeesa Khatoon
  • Mohsin Raza
  • Prahlad C. Ghosh
  • Meryam SardarEmail author
Article
  • 120 Downloads

Abstract

The present study reports the eco-friendly synthesis of selenium nanoparticles (SeNps) and their characterization. Synthesis of SeNps was carried out by incubating aqueous sodium selenite (Na2SeO3) with an alcoholic extract of guava (Psidium guajava) leaf. The biosynthesis was completed in 3 h which was confirmed by UV-Vis spectroscopy and the surface plasmon resonance observed at 381 nm. FTIR spectroscopy data reveals that ascorbic acid and phenolic compounds present in guava leaves are responsible for the synthesis of nanoparticles. Transmissions electron microscopy (TEM) analysis shows the synthesized SeNps are spherical, having a diameter in the range of 8–20 nm. The synthesized nanoparticles show antibacterial effect on both gram-positive and gram-negative bacteria. Scanning electron microscopy (SEM) reveals that SeNps disrupt the bacterial cell structure. The bactericidal effect was studied by fluorescence microscopy. The toxicity was analyzed by MTT assay against HepG2 cell and CHO cells lines. The nanoparticles were found to be biocompatible with potent antibacterial properties.

Keywords

Green synthesis Selenium nanoparticles Biocompatible Antimicrobial 

Notes

Funding Information

The authors acknowledge Indian Council of Medical Research (grant no. 35/8/2012-BMS) Govt. of India, for providing the financial support.

References

  1. 1.
    Manna, L., Scher, E. C., & Alivisatos, A. P. (2000). Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. Journal of the American Chemical Society, 122, 12700–12706.CrossRefGoogle Scholar
  2. 2.
    Berger, L. I. (1997). Semiconducting materials. Boca Raton, FL: CRC Press.Google Scholar
  3. 3.
    Poborchii, V. V., Kolobov, A. V., & Tanaka, K. (1999). Photomelting of selenium at low temperature. Applied Physics Letters, 74, 215–217.CrossRefGoogle Scholar
  4. 4.
    Rayman, M. P. (2000). The importance of selenium to human health. The Lancet, 356, 233–241.CrossRefGoogle Scholar
  5. 5.
    Khiralla, G. M., & El-Deeb, B. A. (2015). Antimicrobial and antibiofilm effects of selenium nanoparticles on some foodborne pathogens. LWT-Food Science and Technology, 63, 1001–1007.CrossRefGoogle Scholar
  6. 6.
    Tran, P. A., & Webster, T. J. (2011). Selenium nanoparticles inhibit Staphylococcus aureus growth. International Journal of Nanomedicine, 6, 1553–1558.Google Scholar
  7. 7.
    Huang, X., Chen, X., Chen, Q., Yu, Q., Sun, D., & Liu, J. (2016). Investigation of functional selenium nanoparticles as potent antimicrobial agents against superbugs. Actabiomaterialia, 30, 397–407.Google Scholar
  8. 8.
    Sonkusre P, Nanduri R, Gupta P, Cameotra SS (2014) Improved extraction of intracellular biogenic selenium nanoparticles and their specificity for cancer chemoprevention. Journal of Nanomedicine & Nanotechnology 2014.Google Scholar
  9. 9.
    Quintana, M., Haro-Poniatowski, E., Morales, J., & Batina, N. (2002). Synthesis of selenium nanoparticles by pulsed laser ablation. Applied Surface Science, 195, 175–186.CrossRefGoogle Scholar
  10. 10.
    Yang, L. B., Shen, Y. H., Xie, A. J., Liang, J. J., & Zhang, B. C. (2008). Synthesis of Se nanoparticles by using TSA ion and its photocatalytic application for decolorization of congo red under UV irradiation. Materials Research Bulletin, 43, 572–582.CrossRefGoogle Scholar
  11. 11.
    Shin, Y., Blackwood, J. M., Bae, I.-T., Arey, B. W., & Exarhos, G. J. (2007). Synthesis and stabilization of selenium nanoparticles on cellulose nanocrystal. Materials Letters, 61, 4297–4300.CrossRefGoogle Scholar
  12. 12.
    Zhang, S.-Y., Zhang, J., Wang, H.-Y., & Chen, H.-Y. (2004). Synthesis of selenium nanoparticles in the presence of polysaccharides. Materials Letters, 58, 2590–2594.CrossRefGoogle Scholar
  13. 13.
    Nath, S., Ghosh, S. K., Panigahi, S., Thundat, T., & Pal, T. (2004). Synthesis of selenium nanoparticle and its photocatalytic application for decolorization of methylene blue under UV irradiation. Langmuir, 20, 7880–7883.CrossRefGoogle Scholar
  14. 14.
    Lin, Z.-H., & Wang, C. R. C. (2005). Evidence on the size-dependent absorption spectral evolution of selenium nanoparticles. Materials Chemistry and Physics, 92, 591–594.CrossRefGoogle Scholar
  15. 15.
    Skalickova, S., Milosavljevic, V., Cihalova, K., Horky, P., Richtera, L., & Adam, V. (2017). Selenium nanoparticles as a nutritional supplement. Nutrition, 33, 83–90.CrossRefGoogle Scholar
  16. 16.
    Ren, F., He, X., Wang, K., & Yin, J. (2012). Biosynthesis of gold nanoparticles using Catclaw Buttercup (Radix Ranunculi Ternati) and evaluation of its colloidal stability. Journal of Biomedical Nanotechnology, 8, 586–593.CrossRefGoogle Scholar
  17. 17.
    Prasad, K. S., Patel, H., Patel, T., Patel, K., & Selvaraj, K. (2013). Biosynthesis of Se nanoparticles and its effect on UV-induced DNA damage. Colloids and Surfaces B: Biointerfaces, 103, 261–266.CrossRefGoogle Scholar
  18. 18.
    Li, S., Shen, Y., Xie, A., Yu, X., Zhang, X., Yang, L., & Li, C. (2007). Rapid, room-temperature synthesis of amorphous selenium/protein composites using Capsicum annuum L extract. Nanotechnology, 18, 1–9.Google Scholar
  19. 19.
    Prasad, K. S., & Selvaraj, K. (2014). Biogenic synthesis of selenium nanoparticles and their effect on As (III)-induced toxicity on human lymphocytes. Biological Trace Element Research, 157, 275–283.CrossRefGoogle Scholar
  20. 20.
    Sharma, G., Sharma, A. R., Bhavesh, R., Park, J., Ganbold, B., Nam, J.-S., & Lee, S.-S. (2014). Biomolecule-mediated synthesis of selenium nanoparticles using dried Vitis vinifera (raisin) extract. Molecules, 19, 2761–2770.CrossRefGoogle Scholar
  21. 21.
    Ramamurthy, C. H., Sampath, K. S., Arunkumar, P., Kumar, M. S., Sujatha, V., Premkumar, K., & Thirunavukkarasu, C. (2013). Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess and Biosystems Engineering, 36, 1131–1139.CrossRefGoogle Scholar
  22. 22.
    Sowndarya, P., Ramkumar, G., & Shivakumar, M. S. (2016). Green synthesis of selenium nanoparticles conjugated Clausena dentata plant leaf extract and their insecticidal potential against mosquito vectors. Artificial Cells, Nanomedicine, and Biotechnology, 45, 1490–1495.CrossRefGoogle Scholar
  23. 23.
    Anu, K., Singaravelu, G., Murugan, K., & Benelli, G. (2017). Green-synthesis of selenium nanoparticles using garlic cloves (Allium sativum): biophysical characterization and cytotoxicity on Vero cells. Journal of Cluster Science, 1–13.Google Scholar
  24. 24.
    Ekor, M. (2013). The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Frontiers in Pharmacology, 4, 1–10.Google Scholar
  25. 25.
    Kim, J.-S., Heo, P., Yang, T.-J., Lee, K.-S., Jin, Y.-S., Kim, S.-K., Shin, D., & Kweon, D.-H. (2011). Bacterial persisters tolerate antibiotics by not producing hydroxyl radicals. Biochemical and Biophysical Research Communications, 413, 105–110.CrossRefGoogle Scholar
  26. 26.
    Hariharan, H., Al-Dhabi, N. A., Karuppiah, P., & Rajaram, S. K. (2012). Microbial synthesis of selenium nanocomposite using Saccharomyces cerevisiae and its antimicrobial activity against pathogens causing nosocomial infection. Chalcogenide Letters, 9, 509–515.Google Scholar
  27. 27.
    Zonaro, E., Lampis, S., Turner, R. J., Qazi, S. J. S., & Vallini, G. (2015). Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms. Frontiers in Microbiology, 6, 1–11.CrossRefGoogle Scholar
  28. 28.
    Jorgensen JH (1993) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard: NCCLS document M7-A3. Nccls,Google Scholar
  29. 29.
    Khatoon, N., Ahmad, R., & Sardar, M. (2015). Robust and fluorescent silver nanoparticles using Artemisia annua: biosynthesis, characterization and antibacterial activity. Biochemical engineering journal., 102, 91–97.CrossRefGoogle Scholar
  30. 30.
    Dutta, R. K., Nenavathu, B. P., & Talukdar, S. (2014). Anomalous antibacterial activity and dye degradation by selenium doped ZnO nanoparticles. Colloids and Surfaces B: Biointerfaces., 114, 218–224.CrossRefGoogle Scholar
  31. 31.
    Pachauri, M., Gupta, E. D., & Ghosh, P. C. (2015). Piperine loaded PEG-PLGA nanoparticles: preparation, characterization and targeted delivery for adjuvant breast cancer chemotherapy. Journal of Drug Delivery Science and Technology, 29, 269–282.CrossRefGoogle Scholar
  32. 32.
    Mishra, A., Mehdi, S. J., Irshad, M., Ali, A., Sardar, M., Moshahid, M., & Rizvi, A. (2012). Effect of biologically synthesized silver nanoparticles on human cancer cells. Science of Advanced Materials, 4, 1–7.CrossRefGoogle Scholar
  33. 33.
    Malhotra, S., Jha, N., & Des ai, K. (2014). A superficial synthesis of selenium nanospheres using wet chemical approach. International Journal of Nanotechnology and Applications, 3, 7–14.Google Scholar
  34. 34.
    Alvarez-Suarez, J. M., Giampieri, F., Gasparrini, M., Mazzoni, L., Forbes-Hernandez, T. Y., Afrin, S., & Battino, M. (2018). Guava (Psidium guajava L. cv. Red Suprema) crude extract protect human dermal fibroblasts against cytotoxic damage mediated by oxidative stress. Plant Foods for Human Nutrition, 73, 18–24.CrossRefGoogle Scholar
  35. 35.
    Tripathy, A., Raichur, A. M., Chandrasekaran, N., Prathna, T. C., & Mukherjee, A. (2010). Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. Journal of Nanoparticle Research, 12, 237–246.CrossRefGoogle Scholar
  36. 36.
    Panicker, C. Y., Varghese, H. T., & Philip, D. (2006). FT-IR, FT-Raman and SERS spectra of Vitamin C. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 65, 802–804.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hammad Alam
    • 1
  • Nafeesa Khatoon
    • 1
  • Mohsin Raza
    • 2
  • Prahlad C. Ghosh
    • 2
  • Meryam Sardar
    • 1
    Email author
  1. 1.Enzyme Technology Lab, Department of BiosciencesJamia Millia IslamiaNew DelhiIndia
  2. 2.Department of BiochemistryUniversity of Delhi South CampusNew DelhiIndia

Personalised recommendations