Advertisement

BioNanoScience

, Volume 8, Issue 3, pp 802–810 | Cite as

Influence of Silver, Zinc Oxide and Copper Oxide Nanoparticles on the Cyanobacterium Calothrix elenkinii

  • Himanshu Mahawar
  • Radha PrasannaEmail author
  • Shashi Bala Singh
  • Lata Nain
Article

Abstract

An investigation was undertaken to compare the effect of different concentrations of three metal nanoparticles i.e. silver (Ag), zinc oxide (ZnO) and copper oxide (CuO), on a cyanobacterium Calothrix elenkinii. Chlorophyll accumulation in C. elenkinii acclimatised to Ag NPs after 1 week at concentrations of 0.1 and 0.5 mg L−1, while it reduced at 1.0 mg L−1. A similar trend was recorded with CuO NPs, in terms of protein content with incubation time. Nitrogen-fixing potential also showed a gradual increase with Ag NPs, up to concentrations of 0.2 mg L−1 during incubation of 1 week, but sharply decreased at 0.5 mg L−1 after 48 h. Both the nitrogen-fixing potential and protein content were stimulated in the presence of CuO NPs. ZnO NPs, in general, were not compatible with the growth and metabolic activities of this cyanobacterium. Microscopic studies revealed the aggregation of NPs on the surface of C. elenkinii filaments, resulting in distinct morphological changes, particularly enhanced hormogonia and akinete formation. It is envisaged that with the increase in incubation period, C. elenkinii acclimatised to counteract the effect of Ag and CuO NPs and utilise them for its growth. The adaptive strategies of this cyanobacterium make it an ideal model system for future nanotoxicological studies.

Keywords

Calothrix Chlorophyll Copper oxide Nanoparticles Silver Zinc oxide 

Abbreviations

Ag

Silver

ZnO

Zinc oxide

CuO

Copper oxide

NPs

Nanoparticles

Notes

Funding Information

The study was supported by the University Grants Commission who provided fellowship and the Post Graduate School, ICAR-IARI, who provided the facilities towards the fulfilment of Ph.D. program. The study was also partly funded by the AMAAS Network Project on Microorganisms, granted by the Indian Council of Agricultural Research (ICAR), New Delhi, to RP. We are thankful to the Division of Microbiology, Division of Entomology, Division of Plant Pathology and Division of Agricultural Chemicals, ICAR-IARI, New Delhi, for providing necessary facilities for undertaking this study.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Cavet, J. S., Borrelly, G. P., & Robinson, N. J. (2003). Zn, Cu and Co in cyanobacteria: selective control of metal availability. FEMS Microbiology Reviews, 27(2–3), 165–181.Google Scholar
  2. 2.
    Gupta, V., Ratha, S. K., Sood, A., Chaudhary, V., & Prasanna, R. (2013). New insights into the biodiversity and applications of cyanobacteria (blue-green algae)—prospects and challenges. Algal Research, 2(2), 79–97.Google Scholar
  3. 3.
    Ardelean, I. I. (2015). Metallic nanoparticle synthesis by cyanobacteria: fundamentals and applications. In The Algae World (pp. 429–448). Netherlands: Springer.Google Scholar
  4. 4.
    Moroney, J. V., Bartlett, S. G., & Samuelsson, G. (2001). Carbonic anhydrases in plants and algae. Plant, Cell & Environment, 24(2), 141–153.Google Scholar
  5. 5.
    Bothe, H., Schmitz, O., Yates, M. G., & Newton, W. E. (2010). Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiology and Molecular Biology Reviews, 74(4), 529–551.Google Scholar
  6. 6.
    Singh, G., Babele, P. K., Kumar, A., Srivastava, A., Sinha, R. P., & Tyagi, M. B. (2014). Synthesis of ZnO nanoparticles using the cell extract of the cyanobacterium, Anabaena strain L31 and its conjugation with UV-B absorbing compound shinorine. Journal of Photochemistry and Photobiology B: Biology, 138, 55–62.Google Scholar
  7. 7.
    Roychoudhury, P., & Pal, R. (2014). Synthesis and characterization of nanosilver—a blue green approach. Indian Journal of Applied Research, 4(1), 54–56.Google Scholar
  8. 8.
    Patel, V., Berthold, D., Puranik, P., & Gantar, M. (2015). Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnology Reports, 5, 112–119.Google Scholar
  9. 9.
    Hazani, A. A., Ibrahim, M. M., Shehata, A. I., El-Gaaly, G. A., Daoud, M., Fouad, D., Rizwana, H., & Moubayed, N. (2013). Ecotoxicity of Ag-nanoparticles on two microalgae, Chlorella vulgaris and Dunaliella tertiolecta. Archives of Biological Sciences, 65(4), 1447–1457.Google Scholar
  10. 10.
    Tang, Y., Li, S., Qiao, J., Wang, H., & Li, L. (2013). Synergistic effects of nano-sized titanium dioxide and zinc on the photosynthetic capacity and survival of Anabaena sp. International Journal of Molecular Sciences, 14(7), 14395–14407.Google Scholar
  11. 11.
    Padrova, K., Lukavsky, J., Nedbalova, L., Cejkova, A., Cajthaml, T., Sigler, K., Vítova, M., & Rezanka, T. (2015). Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids during cultivation of cyanobacteria and microalgae. Journal of Applied Phycology, 27(4), 1443–1451.Google Scholar
  12. 12.
    Hernández-Sierra, J. F., Ruiz, F., Pena, D. C. C., Martínez-Gutiérrez, F., Martínez, A. E., Guillén, A. D. J. P., Tapia-Pérez, H., & Castanon, G. M. (2008). The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine: Nanotechnology, Biology and Medicine, 4(3), 237–240.Google Scholar
  13. 13.
    Bhattacharyya, P., Agarwal, B., Goswami, M., Maiti, D., Baruah, S., & Tribedi, P. (2017). Zinc oxide nanoparticle inhibits the biofilm formation of Streptococcus pneumoniae. Antonie Van Leeuwenhoek, 111, 89–99.Google Scholar
  14. 14.
    He, T., Wang, C., Pan, X., & Wang, Y. (2009). Nonlinear optical response of Au and Ag nanoparticles doped polyvinylpyrrolidone thin films. Physics Letters A, 373(5), 592–595.Google Scholar
  15. 15.
    Ruparelia, J. P., Chatterjee, A. K., Duttagupta, S. P., & Mukherji, S. (2008). Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterialia, 4(3), 707–716.Google Scholar
  16. 16.
    Das, R., Saha, M., Hussain, S. A., & Nath, S. S. (2013). Silver nanoparticles and their antimicrobial activity on a few bacteria. BioNanoScience, 3(1), 67–72.Google Scholar
  17. 17.
    Annavaram, V., Posa, V. R., Uppara, V. G., Jorepalli, S., & Somala, A. R. (2015). Facile green synthesis of silver nanoparticles using Limonia acidissima leaf extract and its antibacterial activity. BioNanoScience, 5(2), 97–103.Google Scholar
  18. 18.
    Chakilam, S. R. (2012). Metal effects on carotenoid content of cyanobacteria. International Journal of Botany, 8(4), 192–197.Google Scholar
  19. 19.
    Huertas, M. J., López-Maury, L., Giner-Lamia, J., Sánchez-Riego, A. M., & Florencio, F. J. (2014). Metals in cyanobacteria: analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms. Life, 4(4), 865–886.Google Scholar
  20. 20.
    Natarajan, C., Prasanna, R., Gupta, V., Dureja, P., & Lata. (2012). Dissecting the fungicidal activity of Calothrix elenkinii using chemical analyses and microscopy. Applied Biochemistry and Microbiology, 48, 53–57.Google Scholar
  21. 21.
    Babu, S., Bidyarani, N., Chopra, P., Monga, D., Kumar, R., Prasanna, R., Kranthi, S., & Saxena, A. K. (2015). Evaluating microbe-plant interactions and varietal differences for enhancing biocontrol efficacy in root rot disease challenged cotton crop. European Journal of Plant Pathology, 142(2), 345–362.Google Scholar
  22. 22.
    Stanier, R. Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological Reviews, 35(2), 171.Google Scholar
  23. 23.
    Hai, Y., Xingjun, W., Yixiong, L., & Guan, W. (2001). Toxic effects of Cu, Zn and Mn on the inhibition of Chlorella pyrenoidosa’s growth [J]. Chinese Journal of Enviromental Science, 1, 005.Google Scholar
  24. 24.
    Ksiazyk, M., Asztemborska, M., Stęborowski, R., & Bystrzejewska-Piotrowska, G. (2015). Toxic effect of silver and platinum nanoparticles toward the freshwater microalga Pseudokirchneriella subcapitata. Bulletin of Environmental Contamination and Toxicology, 94(5), 554–558.Google Scholar
  25. 25.
    Dimkpa, C. O., Mclean, J. E., Britt, D. W., & Anderson, A. J. (2012). CuO and ZnO nanoparticles differently affect the secretion of fluorescent siderophores in the beneficial root colonizer, Pseudomonas chlororaphis O6. Nanotoxicology, 6(6), 635–642.Google Scholar
  26. 26.
    Mackinney, G. (1941). Absorption of light by chlorophyll solutions. Journal of Biological Chemistry, 140, 315–322.Google Scholar
  27. 27.
    Hardy, R. W., Holsten, R. D., Jackson, E. K., & Burns, R. C. (1968). The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiology, 43(8), 1185–1207.Google Scholar
  28. 28.
    Herbert, D., Phipps, P. J., & Strange, R. E. (1971). Determination of protein. Methods in Microbiology B, 5, 242–265.Google Scholar
  29. 29.
    Whetten, R. W., & Sederoff, R. R. (1992). Phenylalanine ammonia-lyase from loblolly pine. Plant Physiology, 98(1), 380–386.Google Scholar
  30. 30.
    Nies, D. H. (2012). Zinc starvation response in a cyanobacterium revealed. Journal of Bacteriology, 194(10), 2407–2412.Google Scholar
  31. 31.
    Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A. J., Quigg, A., Santschi, P. H., & Sigg, L. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17(5), 372–386.Google Scholar
  32. 32.
    Tereshchenko, N., Zmeeva, O., Makarov, B., Kravets, A., Svetlichny, V., Lapin, I., Zotikova, A., Petrova, L., & Yunusova, T. (2017). The influence of silicon oxide nanoparticles on morphometric parameters of monocotyledons and dicotyledons in soil and climatic conditions of western Siberia, as well as on microbiological soil properties. BioNanoScience, 1–9.Google Scholar
  33. 33.
    Fu, P. P., Xia, Q., Hwang, H. M., Ray, P. C., & Yu, H. (2014). Mechanisms of nanotoxicity: generation of reactive oxygen species. J. Food and Drug Analysis, 22(1), 64–75.Google Scholar
  34. 34.
    Bast, A., Van der Plas, R. M., Van Den Berg, H., & Haenen, G. R. (1996). Beta-carotene as antioxidant. European Journal of Clinical Nutrition, 50, S54–S56.Google Scholar
  35. 35.
    Rai, L. C. (1989). Silver toxicity in a nitrogen-fixing Cyanobacterium. BioMetals, 2(2), 122–128.MathSciNetGoogle Scholar
  36. 36.
    Çekiç, F. O., Ekinci, S., Inal, M., & Ozakça, D. (2017). Silver nanoparticles induced genotoxicity and oxidative stress in tomato plants. Turkish Journal of Biology, 41(5), 700–707.Google Scholar
  37. 37.
    Falco, W. F., Queiroz, A. M., Fernandes, J., Botero, E. R., Falcão, E. A., Guimarães, F. E. G., M’Peko, J. C., Oliveira, S. L., Colbeck, I., & Caires, A. R. L. (2015). Interaction between chlorophyll and silver nanoparticles: a close analysis of chlorophyll fluorescence quenching. Journal of Photochemistry and Photobiology A: Chemistry, 299, 203–209.Google Scholar
  38. 38.
    Tripathy, B. C., & Mohanty, P. (1980). Zinc-inhibited electron transport of photosynthesis in isolated barley chloroplasts. Plant Physiology, 66, 1174–1178.Google Scholar
  39. 39.
    Perreault, F., Oukarroum, A., Pirastru, L., Sirois, L., Gerson, M. W., & Popovic, R. (2008). Evaluation of copper oxide nanoparticles toxicity using chlorophyll fluorescence imaging in Lemna gibba. Journal of Botany, Article ID, 763142, 9.  https://doi.org/10.1155/2010/763142.CrossRefGoogle Scholar
  40. 40.
    Bojović, B., & Marković, A. (2009). Correlation between nitrogen and chlorophyll content in wheat (Triticum aestivum L.). Kragujevac Journal of Science, 31, 69–74.Google Scholar
  41. 41.
    Evans, J. R. (1983). Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). Plant Physiology, 72(2), 297–302.Google Scholar
  42. 42.
    Tucker, M. (2004). Primary nutrients and plant growth. In: Essential Plant Nutrients SCRIBD, Ed., North Carolina Department of Agriculture, pp.126.Google Scholar
  43. 43.
    Henriksson, L. E., & DaSilva, E. J. (1978). Effects of some inorganic elements on nitrogen-fixation in blue-green algae and some ecological aspects of pollution. Journal of Basic Microbiology, 18(7), 487–494.Google Scholar
  44. 44.
    Horne, A. J., & Goldman, C. R. (1974). Suppression of nitrogen fixation by blue-green algae in a eutrophic lake with trace additions of copper. Science, 183(4123), 409–411.Google Scholar
  45. 45.
    Leland, H. V., & Carter, J. L. (1984). Effects of copper on species composition of periphyton in a sierra Nevada, California, stream. Freshwater Biology, 14(3), 281–296.Google Scholar
  46. 46.
    Delgado, M. J., Bedmar, E. J., & Downie, J. A. (1998). Genes involved in the formation and assembly of rhizobial cytochromes and their role in symbiotic nitrogen fixation. Advances in Microbial Physiology, 40, 191–231.Google Scholar
  47. 47.
    Rath, B. (2012). Microalgal bioremediation: current practices and perspectives. Journal of Biochemical Technology, 3(3), 299–304.Google Scholar
  48. 48.
    Miazek, K., Iwanek, W., Remacle, C., Richel, A., & Goffin, D. (2015). Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial product biosynthesis: a review. International Journal of Molecular Sciences, 16(10), 23929–23969.Google Scholar
  49. 49.
    Middepogu, A. R. (2016). Impact of heavy metal poisoning on cyanobacterial photosynthesis and its detoxification. Innoriginal: International Journal of Sciences, 3(4), 18–23.Google Scholar
  50. 50.
    Chwalibog, A., Sawosz, E., Hotowy, A., Szeliga, J., Mitura, S., Mitura, K., Grodzik, M., Orlowski, P., & Sokolowska, A. (2010). Visualization of interaction between inorganic nanoparticles and bacteria or fungi. International Journal of Nanomedicine, 5, 1085.Google Scholar
  51. 51.
    Patterson, E. A., & Whelan, M. P. (2008). Optical signatures of small nanoparticles in a conventional microscope. Small, 4(10), 1703–1706.Google Scholar
  52. 52.
    Garbayo, I., Cuaresma, M., Vílchez, C., & Vega, J. M. (2008). Effect of abiotic stress on the production of lutein and β-carotene by Chlamydomonas acidophila. Process Biochemistry, 43(10), 1158–1161.Google Scholar
  53. 53.
    Iranshahi, S., Nejadsattari, T., Soltani, N., Shokravi, S., & Dezfulian, M. (2014). The effect of salinity on morphological and molecular characters and physiological responses of Nostoc sp. ISC 101. Iranian Journal of Fisheries Sciences, 13(4), 907–917.Google Scholar
  54. 54.
    Hori, K., Ishii, S. I., Ikeda, G., Okamoto, J. I., Tanji, Y., Weeraphasphong, C., & Unno, H. (2002). Behavior of filamentous cyanobacterium Anabaena spp. in water column and its cellular characteristics. Biochemical Engineering Journal, 10(3), 217–225.Google Scholar
  55. 55.
    Meghana, S., Kabra, P., Chakraborty, S., & Padmavathy, N. (2015). Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Advances, 5, 12293–12299.Google Scholar
  56. 56.
    Deryabin, D. G., Aleshina, E. S., Vasilchenko, A. S., Deryabin, T. D., Efremova, L. V., Karimov, I. F., & Korolevskay, L. B. (2013). Investigation of copper nanoparticles antibacterial mechanisms tested by luminescent Escherichia coli strains. Nanotechnologies in Russia, 8(5), 402–408.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of MicrobiologyICAR-Indian Agricultural Research Institute (IARI)New DelhiIndia
  2. 2.Division of Agricultural ChemicalsICAR-Indian Agricultural Research Institute (IARI)New DelhiIndia

Personalised recommendations