Advertisement

BioNanoScience

, Volume 8, Issue 2, pp 617–623 | Cite as

Biosynthesis and Characterization of Silver Nanoparticles Using Sodium Alginate from the Invasive Macroalga Sargassum muticum

  • Zahira Belattmania
  • Fouad Bentiss
  • Charafeddine Jama
  • Mustapha Barakate
  • Chaimaa Katif
  • Abdeltif Reani
  • Brahim Sabour
Article

Abstract

Silver nanoparticles (AgNPs) were synthesized using sodium alginate extracted from the invasive macroalga Sargassum muticum harvested from the Atlantic coast of Morocco. The characterization of silver nanoparticles was determined by various analytical techniques (UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA)). The X-ray diffraction patterns proved the crystal phase of AgNPs. The interaction of the functional groups of sodium alginate in the AgNPs was confirmed by FTIR analysis. They were spherical in shape with average size around 21.95 ± 0.96 nm and they exhibit important thermal stability. The in vitro antimicrobial activity of the synthesized nanoparticles exhibited high antibacterial activity against the tested human pathogenic bacteria Bacillus cereus, Micrococcus luteus, Staphylococcus aureus, and Pseudomonas aeruginosa. These eco-friendliness alginate-mediated silver nanoparticles may serve as antibacterial agents for pharmaceutical applications.

Keywords

Silver nanoparticles Green synthesis Sodium alginate Sargassum muticum 

Notes

Acknowledgements

Zahira Belattmania acknowledges her doctoral fellowship from the Ministry of Higher Education and Scientific Research of Morocco.

References

  1. 1.
    Roco, M. C., & Bainbridge, W. S. (2005). Societal implications of nanoscience and nanotechnology: maximizing human benefit. Journal of Nanoparticle Research, 7, 1–13.CrossRefGoogle Scholar
  2. 2.
    Rajathi, F. A. A., Parthiban, C., Kumar, G. V., & Anantharaman, P. (2012). Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kützing). Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 99, 166–173.CrossRefGoogle Scholar
  3. 3.
    Rao, C. N. R., Kulkarni, G. U., Thomas, P. J., & Edwards, P. P. (2002). Size-dependent chemistry: properties of nanocrystals. Chemistry - A European Journal, 8, 28–35.CrossRefGoogle Scholar
  4. 4.
    Zheng, J., Stevenson, M. S., Hikida, R. S., & Patten, P. G. V. (2002). Influence of ph on dendrimer-protected nanoparticles. The Journal of Physical Chemistry. B, 106, 1252–1255.CrossRefGoogle Scholar
  5. 5.
    Beyene, H. D., Werkneh, A. A., Bezabh, H. K., & Ambaye, T. G. (2017). Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustainable Materials and Technologies, 13, 18–23.CrossRefGoogle Scholar
  6. 6.
    Kora, A. J., Sashidhar, R. B., & Arunachalama, J. (2010). Gum kondagogu (Cochlospermum gossypium): a template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydrate Polymers, 82, 670–679.CrossRefGoogle Scholar
  7. 7.
    Velusamy, P., Su, C. H., Kumar, G. V., Adhikary, S., Pandian, K., Gopinath, S. C. B., Chen, Y., & Anbu, P. (2016). Biopolymers regulate silver nanoparticle under microwave irradiation for effective antibacterial and antibiofilm activities. PLoS One, 11, e0157612.CrossRefGoogle Scholar
  8. 8.
    Wani, I. A., Ganguly, A., Ahmed, J., & Ahmad, T. (2011). Silver nanoparticles: ultrasonic wave assisted synthesis, optical characterization and surface area studies. Materials Letters, 65, 520–522.CrossRefGoogle Scholar
  9. 9.
    Zaheer, Z., & Rafiuddi. (2011). Multi-branched flower-like silver nanoparticles: preparation and characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 384, 427–431.CrossRefGoogle Scholar
  10. 10.
    Zhang, Q., Li, N., Goebl, J., Lu, Z. D., & Yin, Y. D. A. (2011). Systematic study of the synthesis of silver nanoplates: is citrate a magic reagent. Journal of the American Chemical Society, 133, 18931–18939.CrossRefGoogle Scholar
  11. 11.
    Conte, M., Miyamura, H., Kobayashi, S., & Chechik, V. (2009). Spin trapping of Au–H intermediate in the alcohol oxidation by supported and unsupported gold catalysts. Journal of the American Chemical Society, 131, 7189–7196.CrossRefGoogle Scholar
  12. 12.
    El Badawy, A. M., Scheckel, K. G., Suidan, M., & Tolaymat, T. (2012). The impact of stabilization mechanism on the aggregation kinetics of silver nanoparticles. The Science of the Total Environment, 429, 325–331.CrossRefGoogle Scholar
  13. 13.
    Li, D., Cui, Y., Wang, K., He, Q., Yan, X., & Li, J. (2007). Thermosensitive nanostructures comprising gold nanoparticles grafted with block copolymers. Advanced Functional Materials, 173, 134–140.Google Scholar
  14. 14.
    Kathiraven, T., Sundaramanickam, A., Shanmugam, N., & Balasubramanian, T. (2015). Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Applied Nanoscience, 5, 499–504.CrossRefGoogle Scholar
  15. 15.
    Annamalai, J., & Nallamuthu, T. (2015). Characterization of biosynthesized gold nanoparticles from aqueous extract of Chlorella vulgaris and their anti-pathogenic properties. Applied Nanoscience, 5, 603–607.CrossRefGoogle Scholar
  16. 16.
    Dahl Maddux, B. L. S., & Hutchison, J. E. (2007). Toward greener synthesis. Chemical Reviews, 107, 2228–2269.CrossRefGoogle Scholar
  17. 17.
    Wei, D., Sun, W., Qian, W., Ye, Y., & Ma, X. (2009). The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydrate Research, 344, 2375–2382.CrossRefGoogle Scholar
  18. 18.
    Varaprasad, K., Raghavendra, G. M., Jayaramudu, T., & Seo, J. (2016). Nano zinc oxide–sodium alginate antibacterial cellulose fibres. Carbohydrate Polymers, 135, 349–355.CrossRefGoogle Scholar
  19. 19.
    Li, P., Dai, Y. N., Zhang, J. P., Wang, A. Q., & Wei, Q. (2008). Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. International Journal of Biomedical Sciences, 4, 221–228.Google Scholar
  20. 20.
    Venkatesan, A., Anil, S., Singh, S. K., & Kim, S. K. (2017). Preparations and applications of alginate nanoparticles. In J. Venkatesan, S. Anil, & S. K. Kim (Eds.), Seaweed polysaccharides isolation, Biological and Biomedical Applications (pp. 251–268). Amsterdam: Elsevier.Google Scholar
  21. 21.
    Dhas, S. T., Kumar, G. V., Karthick, V., Govindaraju, K., & Narayana, S. T. (2014). Biosynthesis of gold nanoparticles using Sargassum swartzii and its cytotoxicity effect on HeLa cells. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 133, 102–106.CrossRefGoogle Scholar
  22. 22.
    Otari, S. V., Patil, R. M., Nadaf, N. H., Ghosh, S. J., & Pawar, S. H. (2014). Green synthesis of silver nanoparticles by microorganism using organic pollutant: its antimicrobial and catalytic application. Environmental Science and Pollution Research, 21, 1503–1513.CrossRefGoogle Scholar
  23. 23.
    Yang, J., & Pan, J. (2012). Hydrothermal synthesis of silver nanoparticles by sodium alginate and their applications in surface-enhanced Raman scattering and catalysis. Acta Materialia, 60, 4753–4758.CrossRefGoogle Scholar
  24. 24.
    Rao, Y. N., Banerjee, D., Datta, A., Das, S. K., Guin, R., & Saha, A. (2010). Gamma irradiation route to synthesis of highly redispersible natural polymer capped silver nanoparticles. Radiation Physics and Chemistry, 79, 1240–1246.CrossRefGoogle Scholar
  25. 25.
    Zhao, X., Xia, Y., Li, Q., Ma, X., Quan, F., Geng, C., & Han, Z. (2014). Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 444, 180–188.CrossRefGoogle Scholar
  26. 26.
    Sundarrajan, P., Eswaran, P., Marimuthu, A., Baddireddi Subhadra, L., & Kannaiyan, P. (2012). One pot synthesis and characterization of alginate stabilized semiconductor nanoparticles. Bulletin of the Korean Chemical Society, 33, 3218–3224.CrossRefGoogle Scholar
  27. 27.
    Tripathi, R., & Mishra, B. (2012). Development and evaluation of sodium alginate–polyacrylamide graft–co-polymer-based stomach targeted hydrogels of famotidine. AAPS PharmSciTech, 13, 1091–1102.CrossRefGoogle Scholar
  28. 28.
    Fang, D., Liu, Y., Jiang, S., Nie, J., & Ma, G. (2011). Effect of intermolecular interaction on electrospinning of sodium alginate. Carbohydrate Polymers, 85, 276–279.CrossRefGoogle Scholar
  29. 29.
    Kumar, S. A., Abyaneh, M. K., Gosavi, S. W., Kulkarni, S. K., Pasricha, R., Ahmad, A., & Khan, M. I. (2007). Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnology Letters, 29, 439–445.CrossRefGoogle Scholar
  30. 30.
    Shankar, S., Wang, L. F., & Rhim, J. W. (2016). Preparations and characterization of alginate/silver composite films: effect of types of silver particles. Carbohydrate Polymers, 146, 208–216.CrossRefGoogle Scholar
  31. 31.
    Balavandy, S. K., Shameli, K., & Zainal Abidin, Z. (2015). Rapid and green synthesis of silver nanoparticles via sodium alginate media. International Journal of Electrochemical Science, 10, 486–497.Google Scholar
  32. 32.
    Venkatpurwar, V., & Pokharkar, V. (2011). Green synthesis of silver nanoparticles using marine polysaccharide: study of in-vitro antibacterial activity. Materials Letters, 5, 999–1002.CrossRefGoogle Scholar
  33. 33.
    Mathlouthi, M., & Koenig, J. L. (1986). Vibrational spectra of carbohydrates. Advances in Carbohydrate Chemistry and Biochemistry, 44, 7–89.CrossRefGoogle Scholar
  34. 34.
    Fenoradosoa, T. A., Ali, G., Delattre, C., Laroche, C., Petit, E., Wadouachi, A., & Michaud, P. (2010). Extraction and characterization of an alginate from the brown seaweed Sargassum turbinarioides Grunow. Journal of Applied Phycology, 22, 131–137.CrossRefGoogle Scholar
  35. 35.
    Papageorgiou, S. K., Kouvelos, E. P., Favvas, E. P., Sapalidis, A. A., Romanos, G. E., & Katsaros, F. K. (2010). Metal–carboxylate interactions in metal–alginate complexes studied with FTIR spectroscopy. Carbohydrate Research, 345, 469–473.CrossRefGoogle Scholar
  36. 36.
    Gómez-Ordóñez, E., & Rupérez, P. (2011). FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocolloids, 25, 1514–1520.CrossRefGoogle Scholar
  37. 37.
    Chandıa, N. P., Matsuhiro, B., & Vásquez, A. E. (2001). Alginic acids in Lessonia trabeculata—characterization by formic acid hydrolysis and FT-IR spectroscopy. Carbohydrate Polymers, 46, 81–87.CrossRefGoogle Scholar
  38. 38.
    Chandıa, N. P., Matsuhiro, B., Mejías, E., & Moenne, A. (2004). Alginic acids in Lessonia vadosa: partial hydrolysis and elicitor properties of the polymannuronic acid fraction. Journal of Applied Phycology, 16, 127–133.CrossRefGoogle Scholar
  39. 39.
    Joye, I. J., & McClements, D. J. (2014). Biopolymer-based nanoparticles and microparticles: fabrication, characterization, and application. Current Opinion in Colloid & Interface Science, 19, 417–427.CrossRefGoogle Scholar
  40. 40.
    Yousefzadi, M., Rahimi, Z., & Ghafori, V. (2014). The green synthesis, characterization and antimicrobial activities of silver nanoparticles synthesized from green alga Enteromorpha flexuosa (wulfen) J.Agardh. Materials Letters, 137, 1–4.CrossRefGoogle Scholar
  41. 41.
    Shanmugam, N., Rajkamal, P., Cholan, S., Kannadasan, N., Sathishkumar, K., Viruthagiri, G., & Sundaramanickam, A. (2014). Biosynthesis of silver nanoparticles from the marine seaweed Sargassum wightii and their antibacterial activity against some human pathogens. Applied Nanoscience, 4, 881–888.CrossRefGoogle Scholar
  42. 42.
    Sangeetha, N., Manikandan, S., Singh, M., & Kumaraguru, A. K. (2012). Biosynthesis and characterization of silver nanoparticles using freshly extracted sodium alginate from the seaweed Padina tetrastromatica of Gulf of Mannar, India. Current Nanoscience, 8, 697–702.CrossRefGoogle Scholar
  43. 43.
    Sarwar, A., Katas, H., Samsudin, S. N., & Zin, N. M. (2015). Regioselective sequential modification of chitosan via azide-alkyne click reaction: synthesis, characterization, and antimicrobial activity of chitosan derivatives and nanoparticles. PLoS One, 10, e0123084.CrossRefGoogle Scholar
  44. 44.
    Yu, J., Zhang, W., Li, Y., Wang, G., Yang, L., Jin, J., Chen, Q., & Huang, M. (2014). Synthesis, characterization, antimicrobial activity and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial. Biomedical Materials, 10, 015001.CrossRefGoogle Scholar
  45. 45.
    Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227–1249.CrossRefGoogle Scholar
  46. 46.
    Kvıtek, L., Prucek, R., Panacek, A., Novotny, R., Hrbac, J., & Zboril, R. (2005). The influence of complexing agent concentration on particle size in the process of SERS active silver colloid synthesis. Journal of Materials Chemistry, 15, 1099–1105.CrossRefGoogle Scholar
  47. 47.
    Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramırez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346–2353.CrossRefGoogle Scholar
  48. 48.
    Yang, W., Shen, C., Ji, Q., An, H., Wang, J., Liu, Q., & Zhang, Z. (2009). Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology, 20, 085102.CrossRefGoogle Scholar
  49. 49.
    Chaloupka, K., Malam, Y., & Seifalian, A. M. (2010). Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in Biotechnology, 28, 580–588.CrossRefGoogle Scholar
  50. 50.
    Schrofel, A., Kratosova, G., Safarik, I., Safarikova, M., & Raska, I. (2014). Applications of biosynthesized metallic nanoparticles—a review. Acta Biomaterialia, 10, 4023–4042.CrossRefGoogle Scholar
  51. 51.
    Sahayaraj, K., Rajesh, S., & Rathi, J. M. (2012). Silver nanoparticles biosynthesis using marine alga Padina pavonica (linn.) and its microbicidal activity. Digest Journal of Nanomaterials and Biostructures, 7, 1557–1567.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of SciencesChouaïb Doukkali UniversityEl JadidaMorocco
  2. 2.UMET, CNRS UMR 8207, ENSCL, Lille UniversityLilleFrance
  3. 3.Faculty of Sciences SemlaliaCadi Ayyad UniversityMarrakechMorocco

Personalised recommendations