, Volume 8, Issue 1, pp 81–89 | Cite as

Nanostructured Stable Floating М-Mono- and Bilayers and Langmuir-Schaefer Films of 5,10,15-Triphenylcorrole

  • Larissa A. Maiorova
  • Thao T. Vu
  • Olga A. Gromova
  • Konstantin S. Nikitin
  • Oskar I. Koifman


5,10,15-Triphenylcorrole is a tetrapyrrolic macrocyclic compound similar to B12 vitamin, with pyrrole-pyrrole direct coupling and a carbon skeleton. Stable floating nanostructured mono-, bi-, and tetralayers of the compound were prepared. The main characteristics of the structure, properties, and formation conditions of the layers were determined. A model of monolayers consisting of nanoaggregates was built. The triphenylcorrole produces nanostructured face-on and edge-on monolayers. Stable bilayers and tetralayers form at high values of the initial surface coverage, featuring a constant degree of surface coverage by 3D nanoaggregates at the initial point of the stable state (75%). The layers with bilayered 3D nanostructures demonstrate very high stability. Their size (8 nm) and the number of molecules in them (109) are independent of the initial degree of surface coverage. For the first time, a model of floating bilayers of a macroheterocyclic compound was constructed. Langmuir-Schaeffer films of the corrole were prepared from nanostructured floating polylayers produced on the water surface and then were studied spectrally.


Air-water interface 2D and 3D nanostructures Stable bilayers Langmuir-Schaefer films J-aggregates Triphenylcorrole 



The work is partially supported by the Russian Scientific Foundation (Project 14-23-00204, formation of polymolecular layers and films) and the Ministry of Education and Science оf the Russian Federation (state assignment for the ISUCT, study of the monolayers).


  1. 1.
    St. Denis, T. G., Huang, Y.-Y., & Hamblin, M. R. (2013). Cyclic tetrapyrroles in photodynamic therapy: the chemistry of porphyrins and related compounds in medicine. In K. M. Kadish, K. M. Smith, & R. Guilard (Eds.), Handbook of Porphyrin Science (Vol. 27, pp. 255–301). Singapore: World scientific.Google Scholar
  2. 2.
    Paolesse, R. (2014). Synthesis and modifications of porphyrinoids. Topics in Heterocyclic Chemistry, 33, 1–34.Google Scholar
  3. 3.
    Pawlicki, M., & Latos-Grazyński, L. (2015). Aromaticity switching in porphyrinoids. Chemistry, an Asian Journal, 10(7), 1438–1451.CrossRefGoogle Scholar
  4. 4.
    Lash, T. D. (2013). Carbaporphyrins and related systems. synthesis, characterization, reactivity and insights into porphyrinoid aromaticity. In K. M. Kadish, K. M. Smith, & R. Guilard (Eds.), Handbook of Porphyrin Science (Vol. 16, pp. 1–329). Singapore: World scientific.Google Scholar
  5. 5.
    Aggarwal, A., Qureshy, M., Johnson, J., et al. (2011). Responsive porphyrinoid nanoparticles: development and applications. Journal of Porphyrins and Phthalocyanines, 15(5–6), 338–349.CrossRefGoogle Scholar
  6. 6.
    Samaroo, D., Perez, E., Aggarwal, A., Wills, A., & O’Connor, N. (2014). Strategies for delivering porphyrinoidbased photosensitizers in therapeutic applications. Therapeutic Delivery, 5(7), 59–872.CrossRefGoogle Scholar
  7. 7.
    Goslinski, T., & Piskorz, J. (2011). Fluorinated porphyrinoids and their biomedical applications. Journal of Photochemistry and Photobiology C Photochemistry Reviews, 12(4), 304–321.CrossRefGoogle Scholar
  8. 8.
    Mironov A (2013) Transition metal complexes of porphyrins and porphyrinoids. In: Kadish KM, Smith KM, Guilard R (eds) Handbook of Porphyrin Science. World scientific. Singapore., 18(85), pp 303–413.Google Scholar
  9. 9.
    Mack, J. (2013). The effect of structural modifications on the properties of porphyrinoids. In K. M. Kadish, K. M. Smith, & R. Guilard (Eds.), Handbook of Porphyrin Science (Vol. 23, pp. 281–371). Singapore: World Scientific.Google Scholar
  10. 10.
    Stillman, M. J. (2013). Theoretical aspects of the optical spectroscopy of porphyrinoids. In K. M. Kadish, K. M. Smith, & R. Guilard (Eds.), Handbook of Porphyrin Science (Vol. 14, pp. 461–524). Singapore: World Scientific.Google Scholar
  11. 11.
    Berezin, D. B., & Krest’yaninov, M. A. (2014). Structure of porphyrin H-associates, inverted porphyrinoids, and corroles with N,N-dimethylformamide. Journal of Structural Chemistry, 55(5), 822–830.CrossRefGoogle Scholar
  12. 12.
    Paolesse R (2014) Applications of porphyrinoids. In: Topics in heterocyc. Chemistry. Springer, Berlin, 184.Google Scholar
  13. 13.
    Berezin D. B. (2012). N-Substituted porphyrinoids: structure, spectroscopy, reactivity. LAP Lambert Academic Publishing, 64.Google Scholar
  14. 14.
    Valkova, L., Menelle, A., Borovkov, N., Erokhin, V., Pisani, M., et al. (2003). Small-angle X-ray scattering and neutron reflectivity studies of Langmuir–Blodgett films of copper tetra-tert-butyl-azaporphyrines. Journal of Applied Crystallography, 36, 758–762.CrossRefGoogle Scholar
  15. 15.
    Valkova, L. A., Betrencourt, C., Hochapfel, A., Myagkov, I. V., & Feigin, L. A. (1996). Monolayer study of Monensin and Lasalocid in the gas state. Molecular Crystals and Liquid Crystals, 287, 269–273.CrossRefGoogle Scholar
  16. 16.
    Akopova, O. B., Kotovich, L. N., Bronnikova, A. A., et al. (1998). Polysubstituted triphenylenes with active groups. Molecular parameters, synthesis, structure, and mesomorphism. Journal of Structural Chemistry, 39, 376.CrossRefGoogle Scholar
  17. 17.
    Topchieva, I. N., Osipova, S. V., Banatskaya, M. I., et al. (1989). Membrane-active properties of block-copolymers of ethylene-oxide and propylene-oxide. Doklady Akademii Nauk SSSR, 308(4), 910.Google Scholar
  18. 18.
    Valkova, L. A., Shabyshev, L. S., Feigin, L. A., & Akopova, O. B. (1996). Formation and X-ray diffraction investigation of Langmuir-Blodgett films of liquid crystalline substituted crown esters. Molecular Materials, 6(2), 291–298.Google Scholar
  19. 19.
    Maiorova-Valkova, L. A., Koifman, O. I., Burmistrov, V. A., et al. (2015). 2D M-nanoaggregates in Langmuir layers of calamite mesogen. Protection of Metals and Physical Chemistry of Surfaces, 51(1), 85–92.CrossRefGoogle Scholar
  20. 20.
    Valkova, L., Borovkov, N., Kopranenkov, V., et al. (2002). Some features of the molecular assembly of copper porphyrazines. Materials Science and Engineering, 22, 167.CrossRefGoogle Scholar
  21. 21.
    Vu, T. T., Maiorova, L. A., Berezin, D. B., & Koifman, O. I. (2016). Formation and study of nanostructured M-monolayers and LS-films of triphenylcorrole. Macroheterocycles, 9(1), 73–79.CrossRefGoogle Scholar
  22. 22.
    Maiorova LA (2012) Controlled self-assembling of azaporphyrins in 2D- and 3D-nanostructures in Langmuir layers and Langmuir-Blodgett films. D.Sc. (Phys. And math.) dissertation, Ivanovo State University of Chemistry and Technology, Russia.Google Scholar
  23. 23.
    Supramolecular chemistry (2010) In: Kadish KM, Smith KM, Guilard R (eds) Handbook of Porphyrin Science, World scientific, Singapore, 1, pp 600.Google Scholar
  24. 24.
    Tortora, L., Pomarico, G., Nardis, S., et al. (2013). Supramolecular sensing mechanism of corrole thin films. Sensors and Actuators B, 187, 72–77.CrossRefGoogle Scholar
  25. 25.
    Sinha, W., Kumar, M., Garai, A., Purohit, C. S., Som, T., & Kar, S. (2014). Semi-insulating behaviour of self-assembled tin(IV) corrole nanospheres. Dalton Transactions, 43(33), 12564–12573.CrossRefGoogle Scholar
  26. 26.
    Valkova, L. A., Glibin, A. S., Koifman, O. I., & Erokhin, V. V. (2011). The influence of molecular structure and π-system extent on nano- and microstructure of Langmuir layers of copper azaporphyrins. Journal of Porphyrins and Phthalocyanines, 15, 1044–1051.CrossRefGoogle Scholar
  27. 27.
    Valkova, L., Borovkov, N., Pisani, M., & Rustichelli, F. (2001). Three-dimensional structure of the copper porphyrazine layers at the air–water interface. Thin Solid Films, 401, 267–272.CrossRefGoogle Scholar
  28. 28.
    Karlyuk M.V., Krygin Y.Y., Maiorova-Valkova L.A., Ageeva T.A., Koifman O.I. (2013) Russian Chemical Bulletin, International Edition , 62, 471–479.Google Scholar
  29. 29.
    Petrova, M. V., Maiorova, L. A., Gromova, O. A., et al. (2014). Nanostructure of Zinc(II) tetraphenylporphyrinate Langmuir M-monolayers formed with diluted solution. Macroheterocycles, 7(3), 267–271.CrossRefGoogle Scholar
  30. 30.
    Valkova, L., Valli, L., Casilli, S., et al. (2008). Nanoaggregates of copper porphyrazine in floating layers and Langmuir-Schaefer films. Langmuir, 24, 4857.CrossRefGoogle Scholar
  31. 31.
    Senge, M. О. (2000). Highly substituted porphyrins. In Kadish KM, Smith KM, Guilard R (Eds.), The porphyrin handbook 1, (pp. 239–347) Acad., New York.Google Scholar
  32. 32.
    Valkova, L. A., Glibin, A. S., & Valli, L. (2008). Quantitative analysis of compression isotherms of fullerene C60 Langmuir layers. Colloid Journal, 70(1), 6–11.CrossRefGoogle Scholar
  33. 33.
    Valkova, L., Zyablov, S., Erokhin, V., & Koifman, O. (2010). Nanoaggregates in floating layers of azaporphyrins. Journal of Porphyrins and Phthalocyanines, 14, 513–522.CrossRefGoogle Scholar
  34. 34.
    Kasha, M. (1963). Energy transfer mechanisms and the molecular exciton model for molecular aggregates. Radiation Research, 20, 55–71.CrossRefGoogle Scholar
  35. 35.
    de Miguel, G., Hosomizu, K., Umeyama, T., Matano, Y., Imahori, H., Perez-Morales, M., Martin-Romero, M. T., & Camacho, L. (2011). J-aggregation of a sulfonated amphiphilic porphyrin at the air–water interface as a function of pH. Journal of Colloid and Interface Science, 356, 775–782.CrossRefGoogle Scholar
  36. 36.
    Rubia-Payá, C., de Miguel, G., Martín-Romero, M. T., et al. (2015). UV–Vis reflection–absorption spectroscopy at air–liquid interfaces. Advances in Colloid and Interface Science, 225, 134–145.CrossRefGoogle Scholar
  37. 37.
    Zhai, X., Zhang, L., & Liu, M. J. (2004). Supramolecular assemblies between a new series of gemini-type amphiphiles and TPPS at the air/water interface: aggregation, chirality, and spacer effect. Physical Chemistry B, 108, 7180–7185.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Larissa A. Maiorova
    • 1
  • Thao T. Vu
    • 1
  • Olga A. Gromova
    • 2
  • Konstantin S. Nikitin
    • 1
  • Oskar I. Koifman
    • 1
    • 3
  1. 1.Research Institute of Macroheterocyclic CompoundsIvanovo State University of Chemistry and Technology (ISUCT)IvanovoRussia
  2. 2.Ivanovo State Medical AcademyMinistry of Health of RussiaIvanovoRussia
  3. 3.Institute of Solution ChemistryRussian Academy of SciencesIvanovoRussia

Personalised recommendations