, Volume 7, Issue 3, pp 496–500 | Cite as

Influence of Thermal Separation of Oleic Acid on the Properties of Quantum Dots Solutions and Optoelectronic of Their Langmuir Monolayers

  • Ammar J Al-Alwani
  • A. S. Chumakov
  • I. A. Gorbachev
  • Nikolai Kuznetsov
  • A. A. Kletsov
  • E. G. Glukhovskoy


This article presents a description of a method of oleic acid separation from quantum dot (QD) solution. The oleic acid is a good stabilizer for CdSe/CdS/ZnS QD solution. QDs are an interesting material for fabricating the optoelectronic devices. The main disadvantage in QDs’ presence is an excess unbounded surfactant of the oleic acid. Oleic acid ligands have some defect on the morphology and modify the electronic structure of thin film QDs. One of the methods that allow to remove this excess surfactant is a separation by using high-density polyethylene (HDPE) membrane with thermal treatment. The thermal treatment has an effect on the separation of surfactants and the period of process. The changing in the number of surfactants in QD solution during various conditions is recorded by Langmuir-Blodgett (LB) technique. The QD monolayers are deposited on solid substrate by using Langmuir-Schaefer method. The changing in morphology is studied by atomic force microscopy (AFM). Photoluminescence (PL) spectra and photoconductivity properties of QDs are studied. The change in the surface pressure during separation was recorded. The conductivity enhancement and shifting of PL spectra were observed. It is related to decreasing number of an excess surfactant and changing structure of QDs’ outer shell.


Quantum dots Oleic acid High-density polyethylene Langmuir-Blodgett technique Photoconductivity 



The work is supported by a grant of the Russian Science Foundation RSF-14-12-00275 and National Research Saratov State University.

Supplementary material

12668_2017_412_MOESM1_ESM.docx (1.6 mb)
ESM 1 (DOCX 1620 kb)


  1. 1.
    Gubbala, S., Chakrapani, V., Kumar, V., & Sunkara, M. K. (2008). Band-edge engineered hybrid structures for dye-sensitized solar cells based on SnO2 nanowires. Advanced Functional Materials, 18, 2411–2418.CrossRefGoogle Scholar
  2. 2.
    Kudo, N., Shimazaki, Y., Ohkita, H., Ohoka, M., & Ito, S. (2007). Organic–inorganic hybrid solar cells based on conducting polymer and SnO2 nanoparticles chemically modified with a fullerene derivative. Solar Energy Materials and Solar Cells, 91(13), 1243–1247. doi: 10.1016/j.solmat.2006.11.019.CrossRefGoogle Scholar
  3. 3.
    Zhang, S., Cyr, P. W., McDonald, S. A., Konstantatos, G., & Sargent, E. H. (2005). Enhanced infrared photovoltaic efficiency in PbS nanocrystal/semiconducting polymer composites: 600-fold increase in maximum power output via control of the ligand barrier. Applied Physics Letters, 87, 233101.CrossRefGoogle Scholar
  4. 4.
    Thangadurai, P., Balaji, S., & Manoharan, P. T. (2008). Surface modification of CdS quantum dots using thiols—structural and photophysical studies. Nanotechnology, 19, 43 435708.CrossRefGoogle Scholar
  5. 5.
    Aldana, J., Wang, Y. A., & Peng, X. (2001). Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. Journal of the American Chemical Society, 123, 8844–8850.CrossRefGoogle Scholar
  6. 6.
    Silva, F. O., Carvalho, S. M., Mendonça, R., Macedo, A. W., Balzuweitm, K., Reiss, P., & Schiavon, M. A. (2012). Effect of surface ligands on the optical properties of aqueous soluble CdTe quantum dots. Nanoscale Research Letters, 7, 536.CrossRefGoogle Scholar
  7. 7.
    Justo, Y., Moreels, I., Lambert, K., & Hens, Z. (2010). Langmuir–Blodgett monolayers of colloidal lead chalcogenide quantum dots: morphology and photoluminescence. Nanotechnology, 21, 295606.CrossRefGoogle Scholar
  8. 8.
    Baruah, L., & Nath, S. S. (2013). Oleic acid–capped CdTe quantum dots and their applications as nano-LED. Emerging Materials Research, 2(4), 186–190.CrossRefGoogle Scholar
  9. 9.
    Oertel, D. C., & Bawendia, M. G. (2005). Photodetectors based on treated CdSe quantum-dot films. Applied Physics Letters, 87, 213505.CrossRefGoogle Scholar
  10. 10.
    Chen, J., Lei, W., Li, C., Zhang, Y., Cui, Y., Wang, B., & Deng, W. (2011). Flexible quantum dot sensitized solar cell by electrophoretic deposition of CdSe quantum dots on ZnO nanorods. Physical Chemistry Chemical Physics, 13, 13182–13184.CrossRefGoogle Scholar
  11. 11.
    Rubingera, C. P. L., Moreira, R. L., Cury, L. A., Fontes, G. N., Neves, B. R. A., Meneguzzi, A., & Ferreira, C. A. (2006). Langmuir–Blodgett and Langmuir–Schaefer films of poly (5-amino-1-naphthol) conjugated polymer. Applied Surface Science, 253, 543–548. doi: 10.1016/j.apsusc.2005.12.096.CrossRefGoogle Scholar
  12. 12.
    Liu, Y., & Liu, M. (2002). Monolayers Langmuir–Schaefer films and acidichromism of a nonamphiphilic acetone derivative containing carbazole. New Journal of Chemistry, 26, 180–183. doi: 10.1039/B105694H.CrossRefGoogle Scholar
  13. 13.
    Gorbachev, I. A., Goryacheva, I. Y., & Glukhovskoy, E. G. (2016). Investigation of multilayers structures based on the Langmuir-Blodgett films of CdSe/ZnS quantum dots. BioNanoSci, 6(2), 153–156. doi: 10.1007/s12668-016-0194-0.CrossRefGoogle Scholar
  14. 14.
    Qi, D., Fischbein, M., & Drndic, M. (2005). Efficient polymer-nanocrystal quantum-dot photodetectors. Applied Physics Letters, 86, 093103. doi: 10.1063/1.1872216.CrossRefGoogle Scholar
  15. 15.
    Ootsuka, T., Liu, Z., Osamura, M., Fukuzawa, Y., Kuroda, R., Suzuki, Y., Otogawa, N., Mise, T., Wang, S., Hoshino, Y., Nakayama, Y., Tanoue, H., & Makita, Y. (2005). Studies on aluminum-doped ZnO films for transparent electrode and antireflection coating of β-FeSi2 optoelectronic devices. Thin Solid Films, 476, 30–34. doi: 10.1016/j.tsf.2004.06.145.CrossRefGoogle Scholar
  16. 16.
    Huy, B. T., Seo, M. H., Lim, J. M., Shin, D. S., & Lee, I. L. (2011). A systematic study on preparing CdS quantum dots. Journal of the Korean Physical Society, 59(5), 3293–3299. doi: 10.3938/jkps.59.3293.Google Scholar
  17. 17.
    Liu, L., Peng, Q., & Li, Y. (2008). An effective oxidation route to blue emission CdSe quantum dots. Inorganic Chemistry, 47(8), 3182–3187. doi: 10.1021/ic702203c.CrossRefGoogle Scholar
  18. 18.
    Sapra, S., Mayilo, S., Klar, T. A., Rogach, A. L., & Feldmann, J. (2007). Bright white-light emission from semiconductor nanocrystals: by chance and by design. Advanced Materials, 19, 569–572. doi: 10.1002/adma.200602267.CrossRefGoogle Scholar
  19. 19.
    Reiss, P., Protiˋere, M., & Li, L. (2009). Core/shell semiconductor nanocrystals. Small, 5, 154–168. doi: 10.1002/smll.200800841.CrossRefGoogle Scholar
  20. 20.
    Hai, L. B., Nghia, N. X., Nga, P. T., Chinh, V. D., Trang, N. T. T., & Hanh, V. T. H. (2009). Preparation and spectroscopic investigation of colloidal CdSe/CdS/ZnS core/multishell nanostructure. Journal of Experimental Nanoscience, 4(3), 277–283. doi: 10.1080/17458080802178619.CrossRefGoogle Scholar
  21. 21.
    Gao, B., Shen, C., Yang, Y., Yuan, S., & Chen, G. (2014). Green synthesized CdSe quantum dots capped by 3-mercaptopropionic acid sensitized solar cells. Springer Proceedings in Physics, 155, 9–17. doi: 10.1007/978-3-319-05521-3_2.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Ammar J Al-Alwani
    • 1
    • 2
  • A. S. Chumakov
    • 1
  • I. A. Gorbachev
    • 1
  • Nikolai Kuznetsov
    • 1
  • A. A. Kletsov
    • 1
  • E. G. Glukhovskoy
    • 1
  1. 1.Saratov State University named after N.G. ChernyshevskySaratovRussia
  2. 2.Babylon UniversityBabylonIraq

Personalised recommendations