Advertisement

BioNanoScience

, Volume 7, Issue 3, pp 492–495 | Cite as

Influence of Molecular Characteristics of Chitosan on Properties of In situ Formed Scaffolds

  • T. E. GrigorievEmail author
  • Y. D. Zagoskin
  • S. I. Belousov
  • A. V. Vasilyev
  • T. B. Bukharova
  • G. E. Leonov
  • E. V. Galitsyna
  • D. V. Goldshtein
  • S. N. Chvalun
  • A. A. Kulakov
  • M. A. Paltsev
Article
  • 143 Downloads

Abstract

Effects of molecular weight and degree of deacetylation of chitosan on the properties of chitosan/beta-glycerophosphate situ forming gel were investigated. Storage modulus grows with a decrease of the degree of deacetylation of the chitosan whereas molecular weight has not so strong influence on storage modulus. Higher molecular weight chitosans showed lower cytotoxicity.

Keywords

Chitosan Hydrogel Gelation kinetics Rheology Deacetylation degree Molecular weight Osteoplastic material 

Notes

Acknowledgements

This work was supported by RSCF grant № 16-15-00298.

References

  1. 1.
    Acarturk, T. O., & Hollinger, J. O. (2006). Commercially available demineralized bone matrix compositions to regenerate calvarial critical-sized bone defects. Plastic and Reconstructive Surgery, 118, 862–873. doi: 10.1097/01.prs.0000232385.81219.87.CrossRefGoogle Scholar
  2. 2.
    Laurie, S. W. S., Kaban, L. B., Mulliken, J. B., & Murray, J. E. (1984). Donor-site morbidity after harvesting rib and iliac bone. Plastic and Reconstructive Surgery, 73(6), 933–938.CrossRefGoogle Scholar
  3. 3.
    Frohlich, M., Grayson, W. L., Wan, L. Q., Marolt, D., Drobnic, M., & Vunjak-Novakovic, G. (2008). Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Current Stem Cell Research & Therapy, 3(4), 254–264.CrossRefGoogle Scholar
  4. 4.
    Nkenke, E., & Neukam, F. W. (2014). Autogenous bone harvesting and grafting in advanced jaw resorption: morbidity, resorption and implant survival. European Journal of Oral Implantology, 7(Suppl 2), S203–S217.Google Scholar
  5. 5.
    Zouhary, K. J. (2010). Bone graft harvesting from distant sites: concepts and techniques. Oral Maxillofac. Surg. Clin. N. Am., 22, 301–316. doi: 10.1016/j.coms.2010.04.007.CrossRefGoogle Scholar
  6. 6.
    Deshmukh, J., Deshpande, S., Khatri, R., Deshpande, S., & Deshpande, S. (2014). Vertical and horizontal ridge augmentation in anterior maxilla using autograft, xenograft and titanium mesh with simultaneous placement of endosseous implants. J. Indian Soc. Periodontol., 18, 661.CrossRefGoogle Scholar
  7. 7.
    Uehara, S., Kurita, H., Shimane, T., Sakai, H., Kamata, T., Teramoto, Y., and Yamada, S. (2015). Predictability of staged localized alveolar ridge augmentation using a micro titanium mesh. Oral Maxillofac. Surg. [Epub ahead of print]Google Scholar
  8. 8.
    Triplett, R. G., Nevins, M., Marx, R. E., Spagnoli, D. B., Oates, T. W., Moy, P. K., & Boyne, P. J. (2009). Pivotal, randomized, parallel evaluation of recombinant human bone morphogenetic protein-2/absorbable collagen sponge and autogenous bone graft for maxillary sinus floor augmentation. Journal of Oral and Maxillofacial Surgery, 67, 1947–1960. doi: 10.1016/j.joms.2009.04.085.CrossRefGoogle Scholar
  9. 9.
    Leknes, K. N., Yang, J., Qahash, M., Polimeni, G., Susin, C., & Wikesjö, U. M. E. (2008). Alveolar ridge augmentation using implants coated with recombinant human bone morphogenetic protein-2: radiographic observations. Clinical Oral Implants Research, 19, 1027–1033. doi: 10.1007/978-3-319-13266-2_7.CrossRefGoogle Scholar
  10. 10.
    Whang, K., Goldstick, T. K., & Healy, K. E. (2000). A biodegradable polymer scaffold for delivery of osteotropic factors. Biomaterials, 21, 2545–2551. doi: 10.1016/S0142-9612(00)00122-8.CrossRefGoogle Scholar
  11. 11.
    Cho, M.H., Kim, K.S., Ahn, H.H., Kim, M.S., Kim, S.H., Khang, G., Lee, B., and Lee, H.B. (2008). Chitosan gel as an in situ-forming scaffold for rat bone marrow mesenchymal stem cells in vivo. Tissue Eng. Part A 14, 1099–1108 doi: 10.1007/s11706-011-0142-4
  12. 12.
    Chenite, A., Chaput, C., Wang, D., Combes, C., Buschmann, M. D., & Hoemann, C. D. (2000). Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials, 21, 2155–2161.CrossRefGoogle Scholar
  13. 13.
    Chenite, A., Buschmann, M., Wang, D., Chaput, C., & Kandani, N. (2001). Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions. Carbohydrate Polymers, 46, 39–47. doi: 10.1007/s00396-013-3077-8.CrossRefGoogle Scholar
  14. 14.
    Ngoenkam, J., Faikrua, A., Yasothornsrikul, S., & Viyoch, J. (2010). Potential ofan injectable chitosan/starch/beta-glycerol phosphate hydrogel for sustainingnormal chondrocyte function. International Journal of Pharmaceutics, 391(1–2), 115–124. doi: 10.1016/j.ijpharm.2010.02.028.CrossRefGoogle Scholar
  15. 15.
    Cho, J., Heuzey, M. C., Bégin, A., & Carreau, P. J. (2006). Chitosan and glycerophos-phate concentration dependence of solution behaviour and gel point using smallamplitude oscillatory rheometry. Food Hydrocolloids, 20(6), 936–945.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • T. E. Grigoriev
    • 1
    Email author
  • Y. D. Zagoskin
    • 1
  • S. I. Belousov
    • 1
  • A. V. Vasilyev
    • 2
    • 3
  • T. B. Bukharova
    • 3
  • G. E. Leonov
    • 2
    • 3
  • E. V. Galitsyna
    • 3
  • D. V. Goldshtein
    • 2
    • 3
  • S. N. Chvalun
    • 1
  • A. A. Kulakov
    • 2
  • M. A. Paltsev
    • 4
  1. 1.NRC “Kurchatov Institute”MoscowRussia
  2. 2.Central Research Institute of Dental and Maxillofacial SurgeryMoscowRussia
  3. 3.Research Centre for Medical GeneticsMoscowRussia
  4. 4.N. M. Emanuel Institute of Biochemical PhysicsMoscowRussia

Personalised recommendations