, Volume 8, Issue 2, pp 654–660 | Cite as

Micro-Patterned Polystyrene Sheets as Templates for Interlinked 3D Polyelectrolyte Multilayer Microstructures

  • Meiyu Gai
  • Valeriya L. Kudryavtseva
  • Gleb B. Sukhorukov
  • Johannes Frueh


Polystyrene (PS) is currently mainly used as a sacrificial template during pattern release upon microcontact printing or for self-assembled flat free-standing films. We hereby present a method for creating 3D microstructured free-standing self-assembled polyelectrolyte multilayer (PEM) thin films. The approach presented utilizes a sacrificial microstructured PS template which can be coated with PEM thin films, whereby dissolution of the PS facilitates a free-standing 3D microstructured PEM film. The PS templating approach allows for omitting hot embossing on silicon masters, since PS templates can be prepared by drop casting on silicon masters. The prepared PEM film offers, if gold nanoparticles are incorporated, stimuli-responsive properties like light-induced chamber opening.


Polystyrene Sacrificial template Patterned template Self-assembly Polyelectrolyte multilayer 



The authors would like to acknowledge financial support by the National Natural Science Foundation of China (21503058), the start-up grand of HIT China Scholarship Council No. 201406120038, Queen Mary University of London.

Supplementary material

12668_2017_403_MOESM1_ESM.docx (1.5 mb)
ESM 1 (DOCX 1573 kb)


  1. 1.
    Bode, C., Nordt, T., & Kübler, W. (1996). Anticoagulation after intracoronary stent implantation. Herz, 21(1), 60–63 PMID: 8647580.Google Scholar
  2. 2.
    Hossfeld, S., Nolte, A., Hartmann, H., Recke, M., Schaller, M., Walker, T., Kjems, J., Schlosshauer, B., Stoll, D., Wendel, H.-P., & Krastev, R. (2013). Bioactive coronary stent coating based on layer-by-layer technology for siRNA release. Acta Biomaterialia, 9(5), 6741–6752. doi: 10.1016/j.actbio.2013.01.013.CrossRefGoogle Scholar
  3. 3.
    Hartmann, H., Hossfeld, S., Schlosshauer, B., Mittnacht, U., Pêgo, A. P., Dauner, M., Doser, M., Stoll, D., & Krastev, R. (2013). Hyaluronic acid / chitosan multilayer coatings on neuronal implants for localized delivery of siRNA nanoplexes. Journal of Controlled Release, 168(3), 289–297. doi: 10.1016/j.jconrel.2013.03.026.CrossRefGoogle Scholar
  4. 4.
    Nolte, A., Hossfeld, S., Schroeppel, B., Mueller, A., Stoll, D., Walker, T., Wendel, H.-P., & Krastev, R. (2013). Impact of polyelectrolytes and their corresponding multilayers to human primary endothelial cells. Journal of Biomaterials Applications, 28(1), 84–99. doi: 10.1177/0885328212437610.CrossRefGoogle Scholar
  5. 5.
    Donath, E., Sukhorukov, G. B., Caruso, F., Davis, S. A., & Möhwald, H. (1998). Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angewandte Chemie, 37(16), 2201–2205. doi: 10.1002/(SICI)1521-3773(19980904)37:16<2201::AID-ANIE2201>3.0.CO;2-E.CrossRefGoogle Scholar
  6. 6.
    Wu, Z., Gao, C., Frueh, J., Sun, J., & He, Q. (2015). Remote controllable explosive polymer multilayer tubes for rapid cancer cell killing. Macromolecular Rapid Communications, 36(15), 1444–1449. doi: 10.1002/marc.201500207.CrossRefGoogle Scholar
  7. 7.
    Nolte, A. J., Rubner, M. F., & Cohen, R. E. (2005). Determining the Young ’ s modulus of polyelectrolyte multilayer films via stress-induced mechanical buckling instabilities. Macromolecules, 38, 5367–5370. doi: 10.1021/ma0507950.CrossRefGoogle Scholar
  8. 8.
    Decher, G., Hong, J. D., & Schmitt, J. (1992). Build up of ultrathin multilayer films by a self-assembly process:III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films, 210–211, 831–835. doi: 10.1016/0040-6090(92)90417-A.CrossRefGoogle Scholar
  9. 9.
    Decher, G. (1997). Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science, 277, 1232–1237. doi: 10.1126/science.277.5330.1232.CrossRefGoogle Scholar
  10. 10.
    Michaels, A. S. (1965). Polyelectrolyte complexes. Industrial and Engineering Chemistry, 57(10), 32–40. doi: 10.1021/ie50670a007.CrossRefGoogle Scholar
  11. 11.
    Femmer, R., Mani, A., & Wessling, M. (2015). Ion transport through electrolyte/polyelectrolyte multi-layers. Scientific Reports, 5, 11583. doi: 10.1038/srep11583.CrossRefGoogle Scholar
  12. 12.
    Kiryukhin, M. V., Man, S. M., Tonoyan, A., Low, H. Y., & Sukhorukov, G. B. (2012). Adhesion of polyelectrolyte multilayers: sealing and transfer of microchamber arrays. Langmuir, 28(13), 5678–5686. doi: 10.1021/la3003004.CrossRefGoogle Scholar
  13. 13.
    Kiryukhin, M. V., Gorelik, S. R., Man, S. M., Sandhya, G., Antipina, M. N., Low, H. Y., & Sukhorukov, G. B. (2013). Individually addressable patterned multilayer microchambers for site-specific release-on-demand. Macromol rapid comm, 34, 87–93. doi: 10.1002/marc.201200564.CrossRefGoogle Scholar
  14. 14.
    Kiryukhin, M. V., Man, S. M., Gorelik, S. R., Subramanian, G. S., Low, H. Y., & Sukhorukov, G. B. (2011a). Fabrication and mechanical properties of microchambers made of polyelectrolyte multilayers. Soft Matter, 7(14), 6550. doi: 10.1039/c1sm05101f.CrossRefGoogle Scholar
  15. 15.
    Yoneda, Y. (1963). Anomalous surface reflection of X-rays. Physics Review, 131(5), 2010–2013. doi: 10.1103/PhysRev.131.2010.CrossRefGoogle Scholar
  16. 16.
    Gibaud, A., & Hazra, S. (2000). X-ray reflectivity and diffuse scattering. Current Science, 78(12), 1467–1477.Google Scholar
  17. 17.
    Gai, M., Frueh, J., Girard-Egrot, A., Rebaud, S., Doumeche, B., & He, Q. (2015a). Micro-contact printing of PEM thin films: effect of line tension and surface energies. RSC Advances, 5(64), 51891–51899. doi: 10.1039/C5RA08456C.CrossRefGoogle Scholar
  18. 18.
    Gai, M., Frueh, J., Sukhorukov, G. B., Girard-Egrot, A., Rebaud, S., Doumeche, B., & He, Q. (2015b). Microcontact printing of polyelectrolyte multilayer thin films: glass- viscous flow transition based effects and hydration methods. Colloid Surface A, 483, 271–278. doi: 10.1016/j.colsurfa.2015.05.009.CrossRefGoogle Scholar
  19. 19.
    Frueh, J., Reiter, G., Möhwald, H., He, Q., & Krastev, R. (2012). Orientation change of polyelectrolytes in linearly elongated polyelectrolyte multilayer measured by polarized UV spectroscopy. Colloid Surface A, 415, 366–373. doi: 10.1016/j.colsurfa.2012.08.070.CrossRefGoogle Scholar
  20. 20.
    Schlenoff, J. B., Dubas, S. T., & Farhat, T. (2000). Sprayed polyelectrolyte multilayers. Langmuir, 16, 9968–9969. doi: 10.1021/la001312i.CrossRefGoogle Scholar
  21. 21.
    Portnov, S. A., Yashchenok, A. M., Gubskii, A. S., Gorin, D. A., Neveshkin, A. A., Klimov, B. N., Nefedov, A. A., & Lomova, M. V. (2006). An automated setup for production of nanodimensional coatings by the polyelectrolyte self-assembly method. Instruments and Experimental Techniques, 49(6), 849–854. doi: 10.1134/S0020441206060157.CrossRefGoogle Scholar
  22. 22.
    Zhu, H., Ai, S., He, Q., Cui, Y., & Li, J. (2007). Fabrication of polystyrene/gold nanotubes and nanostructure-controlled growth of aluminate. J Nanosci Nanotechno, 7(7), 2361–2365. doi: 10.1166/jnn.2007.435.CrossRefGoogle Scholar
  23. 23.
    Kato, N., & Caruso, F. (2005). Homogeneous, competitive fluorescence quenching immunoassay based on gold nanoparticle/polyelectrolyte coated latex particles. The Journal of Physical Chemistry. B, 109(42), 19604–19612. doi: 10.1021/jp052748f.CrossRefGoogle Scholar
  24. 24.
    Biebuyck, H. A., Larsen, N. B., Delamarche, E., & Miche, B. (1997). Lithography beyond light : microcontact printing with monolayer resists. IBM J Res Develop, 41(1), 159–170. doi: 10.1147/rd.411.0159.CrossRefGoogle Scholar
  25. 25.
    Decher, G., & Hong, J. (1991). Buildup of ultrathin multilayer films by a self-assembly process I: consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Makromolekulare Chemie, Macromolecular Symposia, 46(1), 321–327. doi: 10.1002/masy.19910460145.CrossRefGoogle Scholar
  26. 26.
    Decher, G., Hong, J. D., & Schmitt, J. (1991). Buildup of ultrathin multilayer films by a self-assembly process II consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Berichte der Bunsengesellschaft für Physikalische Chemie, 95(11), 1430–1434.CrossRefGoogle Scholar
  27. 27.
    Gai, M., Frueh, J., Kudryavtseva, V. L., Mao, R., Kiryukhin, M. V., & Sukhorukov, G. B. (2016a). Patterned microstructure fabrication: polyelectrolyte complexes vs polyelectrolyte multilayers. Scientific Reports, 6, 37000. doi: 10.1038/scirep37000.CrossRefGoogle Scholar
  28. 28.
    Frueh, J., Reiter, G., Keller, J., Möhwald, H., He, Q., & Krastev, R. (2013). Effect of linear elongation of PDMS supported polyelectrolyte multilayer determined by attenuated total reflectance IR radiation. The Journal of Physical Chemistry. B, 117(10), 2918–2925. doi: 10.1021/jp310727f.CrossRefGoogle Scholar
  29. 29.
    Klitzing, R. V. (2006). Internal structure of polyelectrolyte multilayer assemblies. Physical Chemistry Chemical Physics, 8, 5012–5033. doi: 10.1039/B607760A.CrossRefGoogle Scholar
  30. 30.
    Schönhoff, M. (2003). Layered polyelectrolyte complexes: physics of formation and molecular properties. Condensed Matter, 15, 1781–1808. doi: 10.1088/0953-8984/15/49/R01.CrossRefGoogle Scholar
  31. 31.
    Kiryukhin, M. V., Man, S. M., Sadovoy, A. V., Low, H. Y., & Sukhorukov, G. B. (2011b). Peculiarities of polyelectrolyte multilayer assembly on patterned surfaces. Langmuir, 27(13), 8430–8436. doi: 10.1021/la200939p.CrossRefGoogle Scholar
  32. 32.
    Frueh, J., Koehler, R., Moehwald, H., & Krastev, R. (2010). Changes of the molecular structure in polyelectrolyte multilayers under stress. Langmuir, 26(19), 15516–15522. doi: 10.1021/la1015324.CrossRefGoogle Scholar
  33. 33.
    Itzquierdo, A., Ono, S. S., Voegel, J.-C., Schaaf, P., & Decher, G. (2005). Dipping versus spraying: exploring the deposition conditions for speeding up layer by layer assembly. Langmuir, 21, 7558–7567.CrossRefGoogle Scholar
  34. 34.
    Kolasinska, M., Krastev, R., Gutberlet, T., & Warszynski, P. (2009). Layer-by-layer deposition of polyelectrolytes. Dipping versus spraying. Langmuir, 25(2), 1224–1232. doi: 10.1021/la803428f.CrossRefGoogle Scholar
  35. 35.
    He, W., Frueh, J., Hu, N., Liu, L., Gai, M., & He, Q. (2016). Guidable thermophoretic janus micromotors containing gold nanocolorifiers for infrared laser assisted tissue welding. Advancement of Science, 1600206. doi: 10.1002/advs.201600206.
  36. 36.
    Cebeci, F. Ç., Schmidt, D. J., & Hammond, P. T. (2014). Multilayer transfer printing of electroactive thin film composites. ACS Applied Materials & Interfaces, 6(22), 20519–20523. doi: 10.1021/am506120e.CrossRefGoogle Scholar
  37. 37.
    Gai, M., Frueh, J., Hu, N., Si, T., Sukhorukov, G. B., & He, Q. (2016b). Self-propelled two dimensional polymer multilayer plate micromotors. Physical Chemistry Chemical Physics, 18, 3397–3401. doi: 10.1039/c5cp07697h.CrossRefGoogle Scholar
  38. 38.
    Zhang, P., Liu, Y., Xia, J., Wang, Z., Kirkland, B., & Guan, J. (2013). Top-down fabrication of polyelectrolyte-thermoplastic hybrid microparticles for unidirectional drug delivery to single cells. Advanced Healthcare Materials, 2(4), 540–545. doi: 10.1002/adhm.201200200.CrossRefGoogle Scholar
  39. 39.
    Zhang, P., & Guan, J. (2011). Fabrication of multilayered microparticles by integrating layer-by-layer assembly and microcontact printing. Small, 7(21), 2998–3004. doi: 10.1002/smll.201101238.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Micro/Nano Technology Research CentreHarbin Institute of TechnologyHarbinChina
  2. 2.Queen Mary University of LondonLondonUK
  3. 3.Department of Experimental PhysicsNational Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations