Advertisement

BioNanoScience

, Volume 7, Issue 1, pp 4–10 | Cite as

Preparation of the Sm3+-Doped Magnetic Nanoparticles via Microwave-Assisted Polyol Synthesis

  • T. A. Lastovina
  • S. A. Efimova
  • E. A. Kudryavtsev
  • A. V. Soldatov
Article

Abstract

Sm3+-doped magnetic nanoparticles (NPs) were prepared via microwave-assisted polyol synthesis in ethylene glycol, poly(ethylene glycol) and mixed ethylene glycol—poly(ethylene glycol) solutions. In present work, the effects of organic solvent composition on particle size, particle size distribution, extent of agglomeration, and samarium content in prepared NPs were studied. The synthesized NPs were characterized by several techniques as follows: X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetry (TGA) and X-Ray fluorescence (XRF) analysis. XRD and TEM results showed formation of ~6.0–17.9 nm NPs having different microstructure characteristics (average particle size, particle size distribution, and agglomeration). The TGA analysis indicated the presence of organic components on the surface of NPs. Cytotoxic activity of the prepared magnetic NPs towards HeLa cells was evaluated by using standard live/dead assay in comparison to a control solution. It was shown that prepared magnetic NPs are characterized by low toxicity that makes possible their use for biomedical applications.

Keywords

Magnetic nanoparticles HeLa cells Polyol synthesis Microwave-assisted synthesis Samarium-doped nanoparticles Iron oxide nanoparticles 

Notes

Acknowledgements

This study was financially supported by grant of Russian Science Foundation (project no. 14-35-00051).

We thank Dr. Peter V. Zolotukhin and Anna A. Belanova (Evolution corporate group) for assistance with cytotoxicity test, and the Joint Research Center “Diagnostics of structure and properties of nanomaterials” of Belgorod National Research University for TGA and XRD measurements and to Dr. Andriy Budnyk (SFedU) for his contribution during preparation of the manuscript.

References

  1. 1.
    Escamilla-Rivera, V., Uribe-Ramírez, M., González-Pozos, S., et al. (2016). Protein corona acts as a protective shield against Fe3O4-PEG inflammation and ROS-induced toxicity in human macrophages. Toxicol Lett, 240, 172–184.CrossRefGoogle Scholar
  2. 2.
    Mody, V. V., Cox, A., Shah, S., et al. (2014). Magnetic nanoparticle drug delivery systems for targeting tumor. Appl Nanosci, 4, 385–392.CrossRefGoogle Scholar
  3. 3.
    Zhao, Z., Zhou, Z., Bao, J., et al. (2013). Octapod iron oxide nanoparticles as high-performance T2 contrast agents for magnetic resonance imaging. Nat Commun, 4, 2266. doi: 10.1038/ncomms3266.Google Scholar
  4. 4.
    Neoh, K. G., & Kang, E. T. (2012). Surface modification of magnetic nanoparticles for stem cell labeling. Soft Matter, 8, 2057–2069.CrossRefGoogle Scholar
  5. 5.
    Wang, Y., Jia, H.-Z., & Han, K. (2013). Theranostic magnetic nanoparticles for efficient capture and in situ chemotherapy of circulating tumor cells. Journal of Materials Chemistry B, 1, 3344–3352.CrossRefGoogle Scholar
  6. 6.
    Gobbo, O. L., Sjaastad, K., & Radomski, M. W. (2015). Magnetic nanoparticles in cancer theranostics. Theranostics, 5(11), 1249–1263.CrossRefGoogle Scholar
  7. 7.
    Thanh, N. T. K. (2012). Magnetic nanoparticles: from fabrication to clinical applications. Boca Raton: CRC Press Taylor and Francis Group.CrossRefGoogle Scholar
  8. 8.
    Huang, P. M., Li, Y., & Sumner, M. E. (2011). Handbook of soil sciences: properties and processes. Boca Raton: CRC Press.Google Scholar
  9. 9.
    Wu, W., Wu, Z., Yu, T. et al. (2015). Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Science and Technology of Advanced Materials, 16, doi:  10.1088/1468-6996/16/2/023501.
  10. 10.
    Huan, W., Cheng, C., Yang, Y., et al. (2012). A study on the magnetic and photoluminescence properties of Eun+ and Sm3+ doped Fe3O4 nanoparticles. J Nanosci Nanotechnol, 12, 4621–4634.CrossRefGoogle Scholar
  11. 11.
    Anbarasu, M., Anandan, M., & Chinnasamy, E. (2015). Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications. Spectrochim Acta A Mol Biomol Spectrosc, 135, 536–539.CrossRefGoogle Scholar
  12. 12.
    Garzon-Manjon, A., Solano, E., & de la Mata, M. (2015). Induced shape controllability by tailored precursor design in thermal and microwave-assisted synthesis of Fe3O4 nanoparticles. J Nanopart Res, 17, 291. doi: 10.1007/s11051-015-3070-x.CrossRefGoogle Scholar
  13. 13.
    Li, C., Wei, R., Xu, Y., et al. (2014). Synthesis of hexagonal and triangular Fe3O4 nanosheets via seed-mediated solvothermal growth. Nano Res, 7(4), 536–543.CrossRefGoogle Scholar
  14. 14.
    Mazario, E., Sanchez-Marcos, J., & Menendez, N. (2014). One-pot electrochemical synthesis of polydopamine coated magnetite nanoparticles. RSC Adv, 4, 48353–48361.CrossRefGoogle Scholar
  15. 15.
    Zhang, W., Zhang, H., & Li, D. (2006). Preparation of Fe3O4 magnetic fluid by one-step method with microemulsion reactor. Frontiers of Chemistry in China, 3, 272–276.CrossRefGoogle Scholar
  16. 16.
    Chin, S. F., Pang, S. C., & Tan, C. H. (2011). Green synthesis of magnetite NPs (via thermal decomposition method) with controllable size and shape. Journal of Materials and Environmental Science, 2(3), 299–302.Google Scholar
  17. 17.
    Fievet, F., Fievet-Vincent, F., & Lagier, J.-P. (1993). Controlled nucleation and growth of micrometre-size copper particles prepared by the polyol process. J Mater Chem, 3(6), 627–632.CrossRefGoogle Scholar
  18. 18.
    Rao, C. N. R., Müller, A., & Cheetham, A. K. (2006). The chemistry of nanomaterials: synthesis, properties and applications. New York: Wiley.Google Scholar
  19. 19.
    Grisaru, H., Palchik, O., & Gedanken, A. (2003). Microwave-assisted polyol synthesis of CuInTe2 and CuInSe2 nanoparticles. Inorg Chem, 42(22), 7148–7155.CrossRefGoogle Scholar
  20. 20.
    Abbas, M., Rao, B. P., Naga, S. M., et al. (2013). Synthesis of high magnetization hydrophilic magnetite (Fe3O4) nanoparticles in single reaction—Surfactantless polyol process. Ceram Int, 39(7), 7605–7611.CrossRefGoogle Scholar
  21. 21.
    Coskun, S., Aksoy, B., & Unalan, H. E. (2011). Polyol synthesis of silver nanowires: an extensive parametric study. Crystal Growth Design, 11, 4963–4969.CrossRefGoogle Scholar
  22. 22.
    Kim, C. W., Cha, H. G., Kim, Y. H., et al. (2009). Surface investigation and magnetic behavior of Co nanoparticles prepared via a surfactant-mediated polyol process. J Phys Chem C, 113, 5081–5086.CrossRefGoogle Scholar
  23. 23.
    Komarneni, S., Li, D., & Newalkar, B. (2002). Microwave-polyol process for Pt and Ag nanoparticles. Langmuir, 18, 5959–5962.CrossRefGoogle Scholar
  24. 24.
    Carroll, K. J., Reveles, J. U., & Shultz, M. D. (2011). Preparation of elemental Cu and Ni nanoparticles by the polyol method: an experimental and theoretical approach. J Phys Chem C, 115, 2656–2664.CrossRefGoogle Scholar
  25. 25.
    Mathur, S., Shen, H., ACer, S., et al. (2010). Nanostructured materials and systems: ceramic transactions. New York: Wiley.CrossRefGoogle Scholar
  26. 26.
    Xiaoa, W., Gu, H., Li, D., et al. (2012). Microwave-assisted synthesis of magnetite nanoparticles for MR blood pool contrast agents. J Magn Magn Mater, 324, 488–494.CrossRefGoogle Scholar
  27. 27.
    Mahdavi, M., Ahmad, M. B., & Haron, M. J. (2013). Synthesis, surface modification and characterization of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules, 18, 7533–7548.CrossRefGoogle Scholar
  28. 28.
    Zhao, S.-Y., Lee, D. K., Kim, C. W., et al. (2006). Synthesis of magnetic nanoparticles of Fe3O4 and CoFe2O4 and their surface modification by surfactant adsorption. Bull Kor Chem Soc, 27(2), 237–242.CrossRefGoogle Scholar
  29. 29.
    Rahman, O., Mohapatra, S. C., & Ahmad, S. (2012). Fe3O4 inverse spinal super paramagnetic nanoparticles. Mater Chem Phys, 132, 196–202.CrossRefGoogle Scholar
  30. 30.
    Harris, J. M. (2013). Poly(ethylene glycol) chemistry: biotechnical and biomedical applications. Berlin: Springer.Google Scholar
  31. 31.
    Jiao, M., Zeng, J., & Jing, L. (2015). Flow synthesis of biocompatible Fe3O4 nanoparticles: insight into the effects of residence time, fluid velocity, and tube reactor dimension on particle size distribution. Chem Mater, 27(4), 1299–1305.CrossRefGoogle Scholar
  32. 32.
    Veronese, F. M. (2009). PEGylated protein drugs: basic science and clinical applications. Switzerland: Birkhäuser Verlag.CrossRefGoogle Scholar
  33. 33.
    FAO/WHO (1980). Evaluation of certain food additives. Twenty-third report of the joint FAO/WHO expert committee on food additives. World Health Organ Tech. Rep. Ser. No. 648.Google Scholar
  34. 34.
    Fruijtier-Pölloth, C. (2005). Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products. Toxicology, 214(1–2), 1–38.CrossRefGoogle Scholar
  35. 35.
    World Health Organization (2003). Ethylene glycol: human health aspects (Concise International Chemical Assessment Documents (Book 45)).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • T. A. Lastovina
    • 1
  • S. A. Efimova
    • 1
  • E. A. Kudryavtsev
    • 2
  • A. V. Soldatov
    • 1
  1. 1.International Research Center “Smart materials”Southern Federal UniversityRostov-on-DonRussia
  2. 2.Joint Research Center “Diagnostics of structure and properties of nanomaterials”Belgorod National Research UniversityBelgorodRussia

Personalised recommendations