Advertisement

BioNanoScience

, Volume 7, Issue 1, pp 194–198 | Cite as

Use of Gene-Activated Demineralized Bone Allograft in the Therapy of Ulnar Pseudarthrosis. Case Report

  • Ruslan MasgutovEmail author
  • Mikhail Chekunov
  • Margarita Zhuravleva
  • Galina Masgutova
  • Oleg Teplov
  • Ramil Salikhov
  • Damir Galimov
  • Yuri Plakseichuk
  • Albert Rizvanov
Article

Abstract

This paper presents a clinical case of successful ulnar pseudarthrosis treatment using a gene-activated bone allograft containing VEGF (vascular endothelial growth factor) and BMP2 (bone morphogenetic protein 2) in the form of a multicystron plasmid. Demineralized bone matrix with applied recombinant plasmid DNA was grafted into the bone defect using the classical open surgical approach. Two months after the surgery, the patient noticed the disappearance of pain including pain during activity. On X-rays of ulna, signs of union in the form of callus formation were found.

Keywords

Ulnar pseudarthrosis Graft VEGF BMP2 

Notes

Acknowledgments

The work is performed according to the Russian Government Program of Competitive Growth of the Kazan Federal University and subsidy allocated to the Kazan Federal University for the state assignment in the sphere of scientific activities. Some of the experiments were conducted using the equipment of Interdisciplinary Center for collective use of the Kazan Federal University supported by the Ministry of Education of Russia (ID RFMEFI59414X0003) and the Pharmaceutical Research and Education Center, Kazan (Volga Region) Federal University, Kazan, Russia. The work was supported by the Ministry of Health Care of Tatarstan Republic.

Compliance with Ethical Standards

Written informed consent of the patient to the surgery was obtained. The intervention was carried out with the permission of the Ethics Committee within the context of the topic “Improvement of treatment methods for injuries and diseases of large joints” of the State autonomous health care institution “Republican clinical hospital of the Ministry of health care of the Republic of Tatarstan”.

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Helfet, D. L., Kloen, P., Anand, N., Rosen, H. S. (2003). Open reduction and internal fixation of delayed unions and nonunions of fractures of the distal part of the humerus. The Journal of Bone and Joint Surgery. American Volume, 85-A(1), 33–40.CrossRefGoogle Scholar
  2. 2.
    Senger, D. R., Galli, S. J., Dvorak, A. M., Perruzzi, C. A., Harvey, V. S., Dvorak, H. F. (1983). Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science, 219(4587), 983–985.CrossRefGoogle Scholar
  3. 3.
    Palmer, B. F., & Clegg, D. J. (2014). Oxygen sensing and metabolic homeostasis. Molecular and Cellular Endocrinology, 397(1-2), 51–58.CrossRefGoogle Scholar
  4. 4.
    Cébe, S. S., Pieren, M., Cariolato, L., Arn, S., Hoffmann, U., Bogucki, A., et al. (2006). A VEGF-A splice variant defective for heparan sulfate and neuropilin-1 binding shows attenuated signaling through VEGFR-2. Cellular and Molecular Life Sciences, 63(17), 2067–2077.CrossRefGoogle Scholar
  5. 5.
    Shin, Y. J., Choi, J. S., Choi, J. Y., Hou, Y., Cha, J. H., Chun, M. H., et al. (2010). Induction of vascular endothelial growth factor receptor-3 mRNA in glial cells following focal cerebral ischemia in rats. Journal of Neuroimmunology, 229(1-2), 81–90.CrossRefGoogle Scholar
  6. 6.
    Chen, D., Zhao, M., Mundy, G. R. (2004). Bone morphogenetic proteins. Growth Factors, 22(4), 233–241.CrossRefGoogle Scholar
  7. 7.
    Mayr-Wohlfart, U., Waltenberger, J., Hausser, H., Kessler, S., Günther, K. P., Dehio, C., et al. (2002). Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. Bone, 30(3), 472–477.CrossRefGoogle Scholar
  8. 8.
    Fiedler, J., Leucht, F., Waltenberger, J., Dehio, C., Brenner, R. E. (2005). VEGF-A and PlGF-1 stimulate chemotactic migration of human mesenchymal progenitor cells. Biochemical and Biophysical Research Communications, 334(2), 561–568.CrossRefGoogle Scholar
  9. 9.
    Zhuravleva, M. N., Zakirova, E. Y., Masgutov, R. F., Valiullin, V. V., Deev, R. V., Rizvanov, A. A. (2015). Effect of recombinant plasmid constructs encoding combinations of dog and horse vegf and bmp2 cDNAs on mesenchymal stromal cell differentiation in vitro. Genes and Cells, 10(3), 42–48.Google Scholar
  10. 10.
    Street, J., Bao, M., Deguzman, L., Bunting, S., Peale, F. V., Jr., Ferrara, N., et al. (2002). Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proceedings of the National Academy of Sciences of the United States of America, 99(15), 9656–9661.CrossRefGoogle Scholar
  11. 11.
    Yang, Q., McHugh, K. P., Patntirapong, S., Gu, X., Wunderlich, L., Hauschka, P. V. (2008). VEGF enhancement of osteoclast survival and bone resorption involves VEGF receptor-2 signaling and beta3-integrin. Matrix Biology, 27(7), 589–599.CrossRefGoogle Scholar
  12. 12.
    Tsuji, K., Bandyopadhyay, A., Harfe, B. D., Cox, K., Kakar, S., Gerstenfeld, L., et al. (2006). BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nature Genetics, 38(12), 1424–1429.CrossRefGoogle Scholar
  13. 13.
    Cheng, H., Jiang, W., Phillips, F., Haydon, R., Peng, Y., Zhou, L., et al. (2003). Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). The Journal of Bone and Joint Surgery. American Volume, 85-A(8), 1544–1552.CrossRefGoogle Scholar
  14. 14.
    Ong, K. L., Villarraga, M. L., Lau, E., Carreon, L. Y., Kurtz, S. M., Glassman, S. D. (2010). Off-label use of bone morphogenetic proteins in the United States using administrative data. Spine, 35(19), 1794–1800.CrossRefGoogle Scholar
  15. 15.
    Kwong, F. N., Hoyland, J. A., Freemont, A. J., Evans, C. H. (2009). Altered relative expression of BMPs and BMP inhibitors in cartilaginous areas of human fractures progressing towards nonunion. Journal of Orthopaedic Research, 27(6), 752–757.CrossRefGoogle Scholar
  16. 16.
    Burkus, J. K., Heim, S. E., Gornet, M. F., Zdeblick, T. A. (2003). Is INFUSE bone graft superior to autograft bone? An integrated analysis of clinical trials using the LT-CAGE lumbar tapered fusion device. Journal of Spinal Disorders & Techniques, 16(2), 113–122.CrossRefGoogle Scholar
  17. 17.
    Howell, T. H., Fiorellini, J., Jones, A., Alder, M., Nummikoski, P., Lazaro, M., et al. (1997). A feasibility study evaluating rhBMP-2/absorbable collagen sponge device for local alveolar ridge preservation or augmentation. The International Journal of Periodontics & Restorative Dentistry, 17(2), 124–139.Google Scholar
  18. 18.
    Kakudo, N., Kusumoto, K., Wang, Y. B., Iguchi, Y., Ogawa, Y. (2006). Immunolocalization of vascular endothelial growth factor on intramuscular ectopic osteoinduction by bone morphogenetic protein-2. Life Sciences, 79(19), 1847–1855.CrossRefGoogle Scholar
  19. 19.
    Zhang, W., Zhu, C., Wu, Y., Ye, D., Wang, S., Zou, D., et al. (2014). VEGF and BMP-2 promote bone regeneration by facilitating bone marrow stem cell homing and differentiation. European Cells & Materials, 27, 1–11.CrossRefGoogle Scholar
  20. 20.
    Jiang, J., Fan, C.-Y., Zeng, B.-F. (2011). Experimental construction of BMP2 and VEGF gene modified tissue engineering bone in vitro. International Journal of Molecular Sciences, 12(3), 1744–1755.CrossRefGoogle Scholar
  21. 21.
    Seamon, J., Wang, X., Cui, F., Keller, T., Dighe, A. S., Balian, G., et al. (2013). Adenoviral delivery of the VEGF and BMP-6 genes to rat mesenchymal stem cells potentiates osteogenesis. Bone Marrow Research, 2013, 737580.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ruslan Masgutov
    • 1
    • 2
    Email author
  • Mikhail Chekunov
    • 2
  • Margarita Zhuravleva
    • 1
  • Galina Masgutova
    • 1
  • Oleg Teplov
    • 2
  • Ramil Salikhov
    • 2
  • Damir Galimov
    • 2
  • Yuri Plakseichuk
    • 2
  • Albert Rizvanov
    • 1
  1. 1.Kazan Federal UniversityKazanRussian Federation
  2. 2.Republic Clinical HospitalKazanRussian Federation

Personalised recommendations