Advertisement

BioNanoScience

, Volume 6, Issue 4, pp 568–570 | Cite as

New Antioxidant Genes from an Anhydrobiotic Insect: Unique Structural Features in Functional Motifs of Thioredoxins

  • A. A. NesmelovEmail author
  • R. M. Devatiyarov
  • T. A. Voronina
  • S. A. Kondratyeva
  • A. V. Cherkasov
  • R. Cornette
  • T. Kikawada
  • E. I. Shagimardanova
Article

Abstract

Polipedilum vanderplanki is the most complex known organism able to survive body desiccation via entering a state of suspended metabolism called anhydrobiosis. This unique ability is based on the specific molecular machinery involving a synthesis of non-reducing sugar trehalose and a variety of protective proteins. Genes encoding these protective proteins are extensively duplicated in the P. vanderplanki genome and become hugely upregulated in response to desiccation. Some of these highly expressed genes encode substitutions of amino acids crucial for the function of corresponding proteins. An intriguing group of protective proteins in P. vanderplanki are thioredoxins (TRX). These antioxidant proteins are important for P. vanderplanki anhydrobiosis since desiccation is tightly related to the elevated production of free radicals and oxidative damage. The TRX set is unprecedentedly expanded in the P. vanderplanki genome up to 25 TRX genes. Genomes of congeneric midge Polipedilum nubifer, Apis mellifera, Drosophila melanogaster, and Anopheles gambiae encode only 3–7 TRX genes. Moreover, all three P. vanderplanki thioredoxin genes most expressed at 24 h of P. vanderplanki larva desiccation encode for proteins missing the typical CxxC motif.

Keywords

Anhydrobiosis P. vanderplanki Thioredoxins Amino acid substitution CxxC motif 

Notes

Acknowledgments

This work was supported by Ministry of Education and Science of the Russian Federation (Research identifier: RFMEFI58414X0002).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interests.

References

  1. 1.
    Sakurai, M., Furuki, T., Akao, K.-I., Tanaka, D., Nakahara, Y., Kikawada, T., et al. (2008). Vitrification is essential for anhydrobiosis in an African chironomid, Polypedilum vanderplanki. Proceedings of the National Academy of Sciences of the United States of America, 105, 5093–5098. doi: 10.1073/pnas.0706197105.CrossRefGoogle Scholar
  2. 2.
    Cornette, R., & Kikawada, T. (2011). The induction of anhydrobiosis in the sleeping chironomid: current status of our knowledge. IUBMB Life, 63, 419–429. doi: 10.1002/iub.463.CrossRefGoogle Scholar
  3. 3.
    Gusev, O., Suetsugu, Y., Cornette, R., Kawashima, T., Logacheva, M. D., Kondrashov, A. S., et al. (2014). Comparative genome sequencing reveals genomic signature of extreme desiccation tolerance in the anhydrobiotic midge. Nature Communications, 5, 4784. doi: 10.1038/ncomms5784.CrossRefGoogle Scholar
  4. 4.
    França, M. B., Panek, A. D., Eleutherio, E. C. A. (2007). Oxidative stress and its effects during dehydration. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 146, 621–631. doi: 10.1016/j.cbpa.2006.02.030.CrossRefGoogle Scholar
  5. 5.
    Fomenko, D. E., & Gladyshev, V. N. (2003). Identity and functions of CxxC-derived motifs. Biochemistry, 42, 11214–11225. doi: 10.1021/bi034459s.CrossRefGoogle Scholar
  6. 6.
    Wilusz, J. E., Sunwoo, H., Spector, D. L. (2009). Long noncoding RNAs: functional surprises from the RNA world. Genes and Development, 23, 1494–1504. doi: 10.1101/gad.1800909.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. A. Nesmelov
    • 1
    Email author
  • R. M. Devatiyarov
    • 1
  • T. A. Voronina
    • 1
  • S. A. Kondratyeva
    • 1
  • A. V. Cherkasov
    • 1
  • R. Cornette
    • 2
  • T. Kikawada
    • 2
  • E. I. Shagimardanova
    • 1
  1. 1.Institute of Fundamental Biology and MedicineKazan Federal UniversityKazanRussia
  2. 2.National Institute of Agrobiological Sciences (NIAS)TsukubaJapan

Personalised recommendations