, Volume 5, Issue 3, pp 181–184 | Cite as

Organic Memristive Device Based on Polyaniline Film Prepared by Spin Coating

  • D. A. Lapkin
  • A. N. KorovinEmail author
  • V. A. Demin
  • A. V. Emelyanov
  • S. N. Chvalun


Thin polyaniline films for organic memristors were prepared by spin coating for the first time. The preparation condition effects on morphology and conductivity of the made-up films were studied. The fabricated films were used for assembling organic memristive devices. Current–voltage characteristics of the devices show hysteresis loop and resistive switching behavior under changing bias voltage, what allows their application as synapse-like elements. Found properties of these devices prove the spin-coating technique to be suitable for organic memristive device preparation. It is potentially able to become a simple, cheap, and scalable technology for mass production of polyaniline-based organic memristive devices.


Memristor Organic electronics Polyaniline processing Spin coating 



This work was financially supported by the Russian Foundation for Basic Research (15-29-01324) and Russian Federation President’s grant for Support of Young Scientists (МК-5779.2015.3) in part of the development and formation of memristive devices and analysis of results. The measurements were done on the equipment of the Resource centers of Complex of NBICS-technologies of Kurchatov Institute.


  1. 1.
    Chua, L. O. (1971). Memristor—the missing circuit element. IEEE Transactions on Circuit Theory, 18(5), 507–519. doi: 10.1109/TCT.1971.1083337.CrossRefGoogle Scholar
  2. 2.
    Hebb, D. O. (1961). The organization of behavior: a neuropsychological theory. Science Editions. New York: Wiley.Google Scholar
  3. 3.
    Strukov, D. B., Snider, G. S., Stewart, D. R., Williams, R. S. (2008). The missing memristor found. Nature, 453(7191), 80–83. doi: 10.1038/nature06932.CrossRefGoogle Scholar
  4. 4.
    Yang, J. J., Pickett, M. D., Li, X., Ohlberg, D. A. A., Stewart, D. R., Williams, R. S. (2008). Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotechnology, 3(7), 429–433. doi: 10.1038/nnano.2008.160.CrossRefGoogle Scholar
  5. 5.
    Paul, E. W., Ricco, A. J., Wrighton, M. S. (1985). Resistance of polyaniline films as a function of electrochemical potential and the fabrication of polyaniline-based microelectronic devices. Journal of Physical Chemistry, 89(8), 1441–1447. doi: 10.1021/j100254a028.CrossRefGoogle Scholar
  6. 6.
    Das, B. C., Pillai, R. G., Wu, Y., McCreery, R. L. (2013). Redox-gated three-terminal organic memory devices: effect of composition and environment on performance. ACS Applied Materials & Interfaces, 5(21), 11052–11058. doi: 10.1021/am4032828.CrossRefGoogle Scholar
  7. 7.
    Lei, Y., Liu, Y., Xia, Y., Gao, X., Xu, B., Wang, S., et al. (2014). Memristive learning and memory functions in polyvinyl alcohol polymer memristors. AIP Advances, 4(7), 077105. doi: 10.1063/1.4887010.CrossRefGoogle Scholar
  8. 8.
    Erokhin, V., Berzina, T., Gorshkov, K., Camorani, P., Pucci, A., Ricci, L., et al. (2012). Stochastic hybrid 3D matrix: learning and adaptation of electrical properties. Journal of Materials Chemistry, 22(43), 22881–22887. doi: 10.1039/C2JM35064E.CrossRefGoogle Scholar
  9. 9.
    Erokhin, V., Berzina, T., Fontana, M. P. (2005). Hybrid electronic device based on polyaniline-polyethyleneoxide junction. Journal of Applied Physics, 97(6), 064501. doi: 10.1063/1.1861508.CrossRefGoogle Scholar
  10. 10.
    Demin, V. A., Erokhin, V. V., Kashkarov, P. K., Kovalchuk, M. V. (2014). Electrochemical model of the polyaniline based organic memristive device. Journal of Applied Physics, 116(6), 064507. doi: 10.1063/1.4893022.CrossRefGoogle Scholar
  11. 11.
    Erokhin, V., & Fontana, M. P. (2011). Thin film electrochemical memristive systems for bio-inspired computation. Journal of Computational and Theoretical Nanoscience, 8(3), 313–330. doi: 10.1166/jctn.2011.1695.CrossRefGoogle Scholar
  12. 12.
    Demin, V. A., Erokhin, V. V., Emelyanov, A. V., Battistoni, S., Baldi, G., Iannotta, S., et al. (2015). Hardware elementary perceptron based on polyaniline memristive devices. Organic Electronics, 25, 16–20. doi: 10.1016/j.orgel.2015.06.015.CrossRefGoogle Scholar
  13. 13.
    Stejskal, J., & Gilbert, R. G. (2002). Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure and Applied Chemistry, 74(5), 857–867.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • D. A. Lapkin
    • 1
    • 2
  • A. N. Korovin
    • 1
    Email author
  • V. A. Demin
    • 1
    • 2
  • A. V. Emelyanov
    • 1
    • 2
  • S. N. Chvalun
    • 1
  1. 1.National Research Centre “Kurchatov Institute”MoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)DolgoprudnyRussia

Personalised recommendations