Advertisement

BioNanoScience

, Volume 5, Issue 3, pp 135–139 | Cite as

Green Synthesis of Copper Oxide Nanoparticles Using Aloe vera Leaf Extract and Its Antibacterial Activity Against Fish Bacterial Pathogens

  • P. P. N. Vijay Kumar
  • U. Shameem
  • Pratap Kollu
  • R. L. Kalyani
  • S. V. N. Pammi
Article

Abstract

The present study reports biologically oriented process for green synthesis of CuO nanoparticles by using eco-friendly and non-toxic Aloe vera leaf extract. Powder X-ray diffraction and transmission electron microscope analysis revealed that synthesized CuO nanoparticles are in monoclinic phase with average particle size of 20 nm. The antibacterial activity of green synthesized CuO nanoparticles was tested against three bacterial fish pathogens “viz:” Aeromonas hydrophila, Pseudomonas fluorescens and Flavobacterium branchiophilum, which are responsible for causing severe infectious diseases in fishes. CuO NPs exhibits enhanced antibacterial activity against all the fish pathogens even at lower concentrations, i.e. above 20 μg/mL.

Keywords

Green synthesis Fish pathogens Aloe vera Leaf extract Antibacterial activity 

Notes

Acknowledgments

We are thankful to the DST-PURSE Programme, Advanced Analytical Laboratory, Andhra University, for the financial assistance and for their support in carrying out the research work regarding SEM-EDX and XRD analysis. The authors are thankful to CRNTS, IIT Bombay for the TEM characterization.

References

  1. 1.
    Nalwa, H. S. (2000). Handbook of nanostructured materials and nanotechnology. New York: Academic.Google Scholar
  2. 2.
    Alivisatos, A. P. (1996). Semiconductor clusters, nanocrystals, and quantum dots. Science, 271, 933–937.CrossRefGoogle Scholar
  3. 3.
    Siavash, I. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13, 2638–2650.CrossRefGoogle Scholar
  4. 4.
    Das, S. K., Khan, M. M. R., Guha, A. K., Das, A. R., Mandal, A. B. (2012). Silver-nano biohybride material: synthesis, characterization and application in water purification. Bioresource Technology, 124, 495–499.CrossRefGoogle Scholar
  5. 5.
    Das, S. K., Dickinson, C., Lafir, F., Brougham, D. F., Marsili, E. (2012). Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chemistry, 14, 1322–1334.CrossRefGoogle Scholar
  6. 6.
    Das, S. K., Khan, M. M. R., Guhab, A. K., Naskar, N. (2013). Bio-inspired fabrication of silver nanoparticles on nanostructured silica: characterization and application as a highly efficient hydrogenation catalyst. Green Chemistry, 15, 2548–2557.CrossRefGoogle Scholar
  7. 7.
    Rao, C. N. R. (1989). Transition metal oxides. Annual Review of Physical Chemistry, 40, 291–326.CrossRefGoogle Scholar
  8. 8.
    Wang, Z. L. (2004). Functional oxides nanobelts—materials, properties and potential applications in nano systems and biotechnology. Annual Review of Physical Chemistry, 55, 159–196.CrossRefGoogle Scholar
  9. 9.
    Rakhshani, A. E. (1986). Preparation, characteristics and photovoltaic properties of cuprous oxide—a review. Solid State Electronics, 29(1), 7–17.CrossRefGoogle Scholar
  10. 10.
    Premkumar, T., & Geckeler, K. E. (2006). Nanosized CuO particles via a supramolecular strategy. Small, 2(5), 616–620.CrossRefGoogle Scholar
  11. 11.
    Ren, G., Hu, D., Cheng, E. W., Vargas-Reus, M. A., Reip, P., Allaker, R. P. (2009). Characterization of copper oxide nano particles for antimicrobial applications. International Journal of Antimicrobial Agents, 33(6), 587–590.CrossRefGoogle Scholar
  12. 12.
    Zailei, Z., Hongwei, C., Yingli, W., Lianying, S., Ziyi, Z., Fabing, S. (2012). Preparation of hierarchical dandelion-like CuO microspheres with enhanced catalytic performance for dimethyldichlorosilane synthesis. Catalysis Science and Technology, 2, 1953–1960.CrossRefGoogle Scholar
  13. 13.
    Sangeetha, G., Rajeshwari, S., Venckatesh, R. (2012). Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97, 1140–1144.CrossRefGoogle Scholar
  14. 14.
    Maensiri, S., Laokul, P., Klinkaewnarong, J., Phokha, S., Promarak, V., Seraphin, S. (2008). Indium oxide (In2O3) nanoparticles using Aloe vera plant extract: synthesis and optical properties. Journal of Optoelectronics and Advanced Materials, 10, 161–165.Google Scholar
  15. 15.
    Surjushe, A., Vasani, R., Saple, D. G. (2008). Aloe vera. Indian Journal of Dermatology, 53, 163–166.CrossRefGoogle Scholar
  16. 16.
    Vijay Kumar, P. P. N., Pammi, S. V. N., Kollu, P., Satyanarayana, K. V. V., Shameem, U. (2014). Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Industrial Crops and Products, 52, 562–566.CrossRefGoogle Scholar
  17. 17.
    Cappuccinno, J. G., & Sherman, N. (1999). Micro—a laboratory manual (pp. 254–256). Addison: Wesley Longman Inc.Google Scholar
  18. 18.
    Stohs, S. J., & Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology and Medicine, 18(2), 321–336.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • P. P. N. Vijay Kumar
    • 1
    • 3
  • U. Shameem
    • 1
  • Pratap Kollu
    • 2
  • R. L. Kalyani
    • 4
  • S. V. N. Pammi
    • 3
  1. 1.Department of Zoology, College of Science and TechnologyAndhra UniversityVisakhapatnamIndia
  2. 2.DST-INSPIRE Faculty, Department of Metallurgical Engineering & Materials ScienceIndian Institute of Technology BombayMumbaiIndia
  3. 3.Advanced Analytical Laboratory, DST-PURSE ProgrammeAndhra UniversityVisakhapatnamIndia
  4. 4.Sri Vishnu College of Pharmacy, VishnupurBhimavaramIndia

Personalised recommendations