Advertisement

BioNanoScience

, Volume 5, Issue 1, pp 1–8 | Cite as

Slime Mould Memristors

  • Ella GaleEmail author
  • Andrew Adamatzky
  • Ben de Lacy Costello
Article

Abstract

In laboratory experiments, we demonstrate that protoplasmic tubes of the acellular slime mould Physarum polycephalum show current versus voltage profiles consistent with memristive systems, and that this effect is due to the living protoplasm of the mould. This complements previous findings on memristive properties of other living systems (human skin and blood) and contributes to the development of self-growing bio-electronic circuits. Distinctive asymmetric VI curves which were occasionally observed when the internal current is on the same order as the driven current, are well-modelled by the concept of active memristors.

Keywords

Memristor Slime mould Bioelectronics Active memristor Physarum 

Notes

Acknowledgments

This work was supported by the European Research Council on grant FP7-ICT-2011-8, Physarum Chip project

References

  1. 1.
    Adamatzky, A. (2008). Developing proximity graphs by Physarum polycephalum: does the plasmodium follow Toussaint hierarchy. Parallel Processing Letters, 19, 105–127.CrossRefMathSciNetGoogle Scholar
  2. 2.
    Adamatzky, A. (2010). Physarum machines. Singapore: World Scientific.Google Scholar
  3. 3.
    Adamatzky, A. (2013). Slime mould tactile sensor. Sensors and actuators B: chemical, 188, 38–44.CrossRefGoogle Scholar
  4. 4.
    Adamatzky, A. (2013). Towards slime mould colour sensor: recognition of colours by Physarum polycephalum. Organic Electronics, 14, 3355–3361.CrossRefGoogle Scholar
  5. 5.
    Adamatzky, A. (2014). Tactile bristle sensors made with slime mold. IEEE Sensors Journal, 14, 324–332.CrossRefGoogle Scholar
  6. 6.
    Adamatzky, A., & Jones, J. (2011). On electrical correlates of Physarum polycephalum spatial activity: can we see Physarum machine in the dark Biophysical Reviews and Letters, 6, 29–57.CrossRefGoogle Scholar
  7. 7.
    Borghetti, J., Snider, G.D., Kuekes, P.J., Yang, J.J., Stewart, D.R., R. Stanley Williams (2010). ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature, 464, 873–876.CrossRefGoogle Scholar
  8. 8.
    Chua, L. (1971). Memristor—the missing circuit element. IEEE Transactions Circuit Theory, 18, 507–519.CrossRefGoogle Scholar
  9. 9.
    Chua, L.O., & Kang, S.M. (1976). Memristive devices and systems. Proceedings of the IEEE, 64, 209–223.CrossRefMathSciNetGoogle Scholar
  10. 10.
    Chua, L., Sbitnev, V., Kim, H. (2012). Hodgkin–Huxley axon is made of memristors. International Journal of Bifurcation and Chaos, 22, 1230,011. (48pp).CrossRefGoogle Scholar
  11. 11.
    de Lacy Costello, B., & Adamatzky, A. (2013). Assessing the chemotaxis behavior of Physarum polycephalum to a range of simple volatile organic chemicals. Communicative and Interfrative Biology, 6.Google Scholar
  12. 12.
    de Lacy Costello, B., Gale, E., Adamatzky, A. (2013). Is spiking logic the route to memristor-based computers? Proceedings of 2013 IEEE International Conference on Electronics, Circuits and Systems, 297–300.Google Scholar
  13. 13.
    Gale, E. (2014). The memory-conservation theory of memristance. Proceedings of UKSIM-AMSS 16th International Conference on Simulation and Modelling, 95, 598–603.Google Scholar
  14. 14.
    Adamatzky, A., Gale, E., de Lacy Costello, B. (2015). Electronic measurement light response of Physarum polycephalum, Forthcoming.Google Scholar
  15. 15.
    Gale, E., Pearson, D., Kitson, S., Adamatzky, A., de Lacy Costello, B. (2014). The effect of changing electrode metal on solution-processed flexible titanium dioxide memristors. Materials Physics and Chemistry. forthcoming.Google Scholar
  16. 16.
    Georgiou, P.S., Yaliraki, S.N., Drakakis, E.M., Barahona, M. (2012). Quantitative measure of hysteresis for memristors through explicit dynamics. Proceedings of the Royal Society A, 468, 2210–2229.CrossRefMathSciNetGoogle Scholar
  17. 17.
    Howard, G. D., Gale, E., Bull, L., de Lacy Costello, B., Adamatzky, A. (2012). Evolution of plastic learning in spiking networks via memristive connections. IEEE Transactions on Evolutionary Computation, 16, 711–719.CrossRefGoogle Scholar
  18. 18.
    Itoh, M., & Chua, L. (2008). Memristor oscillators. International Journal of Bifurcation and Chaos, 18, 3183–3206.CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Hyun Jo, S., Chang, T., Ebong, I., Bhadviya, B. B., Mazumder, P., Lu, W. (2010). Nanoscale memristor device as a synapse in neuromorphic systems. Nanoletters, 10, 1297–1301.CrossRefGoogle Scholar
  20. 20.
    Johnsen, G.K., Lütken, C.A., Martinsen, Ø.G., Grimnes, S. (2011). Memristive model of electro-osmosis in skin. Phys. Rev. E, 83, 031916.CrossRefGoogle Scholar
  21. 21.
    Kosta, S.P., Kosta, Y.P., Bhatele, M., Dubey, Y.M., Gaur, A., Kosta, S., Gupta, J., Patel, A., Patel. B. (2011). Human blood liquid memristor. International Journal of Medical Engineering and Informatics, 16–29.Google Scholar
  22. 22.
    Prasad Kosta, S., Kosta, Y.P., Gaur, A., Dube, Y. M., Chuadhari, J. P., Patoliya, J., Kosta, S., Panchal, P., Vaghela, P., Patel, K., Patel, B., Bhatt, R., Patel, V. (2011). New vistas of electronics towards biological (biomass) sensors. International Journal of Academic Research, 511–526.Google Scholar
  23. 23.
    Nakagaki, T., Yamada, H., Toth, A. (2000). Maze-solving by an amoeboid organism. Nature, 407(6803), 470.CrossRefGoogle Scholar
  24. 24.
    Pershin, Y.V., & Di Ventra, M. (2010). Experimental demonstration of associative memory with memristive neural networks. Neural Networks, 23(7), 881–886.CrossRefGoogle Scholar
  25. 25.
    Pershin, Y.V., La Fontaine, S., di Ventra, M. (2009). Memristive model of amoeba’s learning. Phys. Rev. E, 80, 021926. (6 pages).CrossRefGoogle Scholar
  26. 26.
    Mayne, R., Patton, D, de Lacy Costello, B., Patton, R. C., Adamatzky, A. (2014). On loading slime mould Physarum polycephalum with metallic particles. Forthcoming.Google Scholar
  27. 27.
    Smerieri, A., Berzina, T., Erokhin, V., Fontana, M. P. (2008). Polymeric electrochemical element for adaptive networks: Pulse mode Vol. 104.Google Scholar
  28. 28.
    Stephenson, S.L., & Stempen, H. (2000). Myxomycetes: a handbook of slime molds: Timber Press.Google Scholar
  29. 29.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Stanley Williams, R. (2008). The missing memristor found. Nature, 453, 80–83.CrossRefGoogle Scholar
  30. 30.
    Stanley Williams, R. (2013). Aftermath of finding the memristor. In A. Adamatzky, et al. (eds.), Chaos, CNN, Memristors and Beyond: A Festschrift for Leon Chua (With DVD-ROM, Composed by Eleonora Bilotta) (pp. 490–493). Published by World Scien- tific Publishing Co. Pte. Ltd., ISBN #9789814434805.Google Scholar
  31. 31.
    Saigusa, T., Tero, A., Nakagaki, T., Kuramoto, Y. (2008). Amoebae anticipate periodic events. Phys. Rev. Lett., 100, 018101.CrossRefGoogle Scholar
  32. 32.
    Tian, B., Liu, J., Dvir, T., Jin, L., Tsui, J.H., Qing, Q., Suo, Z., Langer, R., Kohane, D.S., Lieber, C.M. (2012). Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nature Materials, 11, 986–994.CrossRefGoogle Scholar
  33. 33.
    Valov, I., Linn, E., Tappertzhofen, S., Schmelzer, S., van den Hurk, J., Lentz, F., Waser, R. (2013). Nanobatteries in redox-based resistive switches require extension of memristor theory. Nature Communications, 4, 1771. (9pp).CrossRefGoogle Scholar
  34. 34.
    Whiting, J.G.H., de Lacy Costello, B.P.J., Adamatzky, A. (2014). Towards slime mould chemical sensor: mapping chemical inputs onto electrical potential dynamics of physarum polycephalum. Sensors and Actuators B: Chemical, 191(0), 844–853.CrossRefGoogle Scholar
  35. 35.
    Zamarreno-Ramos, C., Carmu nas, L.A., Pérez-Carrasco, J.A., Masquelier, T., Serrano-Gotarredona, T., Linares-Barranco, B. (2011). On spike-timing dependent plasticity, memristive devices and building a self-learning visual cortex. Frontiers in Neuormorphic Engineering, 5, 26(1)–26(20).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ella Gale
    • 1
    Email author
  • Andrew Adamatzky
    • 1
  • Ben de Lacy Costello
    • 1
  1. 1.University of the West of EnglandBristolUK

Personalised recommendations