, Volume 4, Issue 4, pp 349–355 | Cite as

Ultrasensitive Piezoresistive Pressure Sensors Based on Interlocked Micropillar Arrays

  • Jonghwa Park
  • Youngoh Lee
  • Seongdong Lim
  • Youngsu Lee
  • Youngdo Jung
  • Hyuneui Lim
  • Hyunhyub Ko


The development of wearable electronic skins is drawing many interests due to potential applications in prosthetic limbs, robotic skins, and human healthcare monitoring devices. Here, we demonstrate piezoresistive wearable electronic skins based on conductive composite elastomers with interlocked geometry of micropillar arrays. The interlocked micropillar arrays enable the huge variation of contact area and thus the contact resistance between interlocked micropillar arrays when they are deformed in response to external pressure stimuli. In this study, we show that the contact resistance is strongly affected by the variation of diameter, pitch size, and shape of micropillar arrays. The pressure sensor with optimized micropillar dimension shows an ultrahigh pressure sensitivity (−22.8 kPa−1) and response time (∼0.07 s). Finally, we demonstrate that the wearable electronic skin attached on the fingertip is capable of detecting the pressure and vibration signal simultaneously.


Carbon nanotubes Pressure sensor Wearable devices Electronic skin Nanocomposites Micropatterns 



This work was supported by the National Research Foundation of Korea (NRF-2011-0014965, NRF-2012K1A3A1A20031618), BK21 Plus Program (10Z20130011057), Korea Institute of Machinery & Materials (KIMM) (NK175B), and Korea Institute of Science and Technology (KIST) (2E22112-11-249).

Supplementary material

12668_2014_151_MOESM1_ESM.docx (80 kb)
ESM 1 (DOCX 79 kb)


  1. 1.
    Sekitani, T., Yokota, T., Zschieschang, U., Klauk, H., Bauer, S., Takeuchi, K., et al. (2009). Organic nonvolatile memory transistors for flexible sensor arrays. Science, 326(5959), 1516–1519.CrossRefGoogle Scholar
  2. 2.
    Takei, K., Takahashi, T., Ho, J. C., Ko, H., Gillies, A. G., Leu, P. W., et al. (2010). Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Materials, 9(10), 821–826.CrossRefGoogle Scholar
  3. 3.
    Yamada, T., Hayamizu, Y., Yamamoto, Y., Yomogida, Y., Izadi-Najafabadi, A., Futaba, D. N., et al. (2011). A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotechnology, 6(5), 296–301.CrossRefGoogle Scholar
  4. 4.
    Pang, C., Lee, G.-Y., T-i, K., Kim, S. M., Kim, H. N., Ahn, S.-H., et al. (2012). A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nature Materials, 11(9), 795–801.CrossRefGoogle Scholar
  5. 5.
    Tee, B. C., Wang, C., Allen, R., Bao, Z. (2012). An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications. Nature Nanotechnology, 7(12), 825–832.CrossRefGoogle Scholar
  6. 6.
    Webb, R. C., Bonifas, A. P., Behnaz, A., Zhang, Y., Yu, K. J., Cheng, H., et al. (2013). Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nature Materials, 12, 938–944.CrossRefGoogle Scholar
  7. 7.
    Wang, C., Hwang, D., Yu, Z., Takei, K., Park, J., Chen, T., et al. (2013). User-interactive electronic skin for instantaneous pressure visualization. Nature Materials, 12(10), 899–904.CrossRefzbMATHGoogle Scholar
  8. 8.
    Mannsfeld, S. C., Tee, B. C., Stoltenberg, R. M., Chen, C. V. H., Barman, S., Muir, B. V., et al. (2010). Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature Materials, 9(10), 859–864.CrossRefGoogle Scholar
  9. 9.
    Lipomi, D. J., Vosgueritchian, M., Tee, B. C., Hellstrom, S. L., Lee, J. A., Fox, C. H., et al. (2011). Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotechnology, 6(12), 788–792.CrossRefGoogle Scholar
  10. 10.
    Schwartz, G., Tee, B. C.-K., Mei, J., Appleton, A. L., Kim, D. H., Wang, H., et al. (2013). Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nature Communications, 4, 1859.CrossRefGoogle Scholar
  11. 11.
    Persano, L., Dagdeviren, C., Su, Y., Zhang, Y., Girardo, S., Pisignano, D., et al. (2013). High performance piezoelectric devices based on aligned arrays of nanofibers of poly (vinylidenefluoride-co-trifluoroethylene). Nature Communications, 4, 1633.CrossRefGoogle Scholar
  12. 12.
    Wu, W., Wen, X., Wang, Z. L. (2013). Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science, 340(6135), 952–957.CrossRefGoogle Scholar
  13. 13.
    Fan, F.-R., Lin, L., Zhu, G., Wu, W., Zhang, R., Wang, Z. L. (2012). Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Letters, 12(6), 3109–3114.CrossRefGoogle Scholar
  14. 14.
    Yao, H. B., Ge, J., Wang, C. F., Wang, X., Hu, W., Zheng, Z. J., et al. (2013). A flexible and highly pressure‐sensitive graphene–polyurethane sponge based on fractured microstructure design. Advanced Materials, 25(46), 6692–6698.CrossRefGoogle Scholar
  15. 15.
    Ge, J., Yao, H. B., Wang, X., Ye, Y. D., Wang, J. L., Wu, Z. Y., et al. (2013). Stretchable conductors based on silver nanowires: improved performance through a binary network design. Angewandte Chemie, 125(6), 1698–1703.CrossRefGoogle Scholar
  16. 16.
    Pan, L., Chortos, A., Yu, G., Wang, Y., Isaacson, S., Allen, R., et al. (2014). An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nature Communications, 5, 3002.Google Scholar
  17. 17.
    Wu, Z. Y., Li, C., Liang, H. W., Chen, J. F., Yu, S. H. (2013). Ultralight, flexible, and fire‐resistant carbon nanofiber aerogels from bacterial cellulose. Angewandte Chemie International Edition, 52(10), 2925–2929.CrossRefGoogle Scholar
  18. 18.
    Gong, S., Schwalb, W., Wang, Y., Chen, Y., Tang, Y., Si, J., et al. (2014). A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nature Communications, 5, 3132.Google Scholar
  19. 19.
    Chen, Z., Ren, W., Gao, L., Liu, B., Pei, S., Cheng, H.-M. (2011). Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature Materials, 10(6), 424–428.CrossRefGoogle Scholar
  20. 20.
    Park, J., Lee, Y., Hong, J., Ha, M., Jung, Y.-D., Lim, H., et al. (2014). Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano, 8(5), 4689–4697.CrossRefGoogle Scholar
  21. 21.
    Stassi, S., & Canavese, G. (2012). Spiky nanostructured metal particles as filler of polymeric composites showing tunable electrical conductivity. Journal of Polymer Science Part B: Polymer Physics, 50(14), 984–992.CrossRefGoogle Scholar
  22. 22.
    Newns, D. M., Elmegreen, B. G., Liu, X. H., Martyna, G. J. (2012). High response piezoelectric and piezoresistive materials for fast, low voltage switching: simulation and theory of transduction physics at the nanometer‐scale. Advanced Materials, 24(27), 3672–3677.CrossRefGoogle Scholar
  23. 23.
    Zhang, X.-S., Han, M.-D., Wang, R.-X., Zhu, F.-Y., Li, Z.-H., Wang, W., et al. (2013). Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Letters, 13(3), 1168–1172.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jonghwa Park
    • 1
  • Youngoh Lee
    • 1
  • Seongdong Lim
    • 1
  • Youngsu Lee
    • 1
  • Youngdo Jung
    • 2
  • Hyuneui Lim
    • 2
  • Hyunhyub Ko
    • 1
  1. 1.School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan Metropolitan CityRepublic of Korea
  2. 2.Department of Nature-Inspired Nanoconvergence SystemsKorea Institute of Machinery & MaterialsDaejeonRepublic of Korea

Personalised recommendations