, Volume 4, Issue 3, pp 232–239 | Cite as

Detailed AFM Force Spectroscopy of the Interaction Between CD44–IgG Fusion Protein and Hyaluronan

  • Aernout A. Martens
  • Marcel Bus
  • Peter C. Thüne
  • Tjerk H. Oosterkamp
  • Louis C. P. M. de Smet


Atomic force microscopy (AFM) force spectroscopy was used to study the single-molecule rupture events of the interaction between hyaluronan (HA) and the binding domain of its cell surface receptor CD44. AFM probes were amino terminated with 3-aminopropyl triethoxy silane (APTES) followed by covalent coupling of protein A, enabling the binding of the CD44–HA-binding domain, as part of a CD44–Fc fusion protein. HA was covalently bound to APTES-coated silicon surfaces. Single-rupture events were recorded at various loading rates revealing an energy barrier: E b = 24 ± 1 kT and characteristic distance: x β = 1.3 ± 0.1 nm for this interaction. This quantification will be of interest in applications and research involving the use of the CD44–Fc fusion protein since we observe a weaker interaction between HA and CD44–Fc than what has been reported for the entire native CD44 molecule.


CD44 link domain Fusion protein Hyaluronan Force microscopy 



We acknowledge Bram van den Broek (Leiden University, The Netherlands, currently at the Netherlands Cancer Institute, The Netherlands) for the fruitful discussions and Jesper Koning (Delft University of Technology and Leiden University, The Netherlands) for his experimental support. This work was financially supported by a VENI grant from the Netherlands Organization for Scientific Research (NWO, grant no. 700.56.412) to LCPMdS.

Supplementary material

12668_2014_143_MOESM1_ESM.pdf (785 kb)
ESM 1 (PDF 784 kb)


  1. 1.
    Carter, P. J. (2011). Introduction to current and future protein therapeutics: a protein engineering perspective. Experimental Cell Research, 317, 1261–1269. doi: 10.1016/j.yexcr.2011.02.013.CrossRefGoogle Scholar
  2. 2.
    Czajkowsky, D. M., Hu, J., Shao, Z., Pleass, R. J. (2012). Fc-fusion proteins: new developments and future perspectives. EMBO Molecular Medicine, 4, 1015–1028. doi: 10.1002/emmm.201201379.CrossRefGoogle Scholar
  3. 3.
    Huang, C. (2009). Receptor-Fc fusion therapeutics, traps, and MIMETIBODY (TM) technology. Current Opinion in Biotechnology, 20, 692–699. doi: 10.1016/j.copbio.2009.10.010.CrossRefGoogle Scholar
  4. 4.
    Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C. B., Seed, B. (1990). CD44 is the principal cell surface receptor for hyaluronate. Cell, 61, 1303–1313. doi: 10.1016/0092-8674(90)90694-A.CrossRefGoogle Scholar
  5. 5.
    Lee, J. Y., & Spicer, A. P. (2000). Hyaluronan: a multifunctional, megaDalton, stealth molecule. Current Opinion in Cell Biology, 12, 581–586. doi: 10.1016/s0955-0674(00)00135-6.CrossRefGoogle Scholar
  6. 6.
    Misra, S., Heldin, P., Hascall, V. C., Karamanos, N. K., Skandalis, S. S., Markwald, R. R., et al. (2011). Hyaluronan-CD44 interactions as potential targets for cancer therapy. FEBS Journal, 278, 1429–1443. doi: 10.1111/j.1742-4658.2011.08071.x.CrossRefGoogle Scholar
  7. 7.
    Necas J, Bartosikova, L, Brauner, P, Kolar, J (2008) Hyaluronic acid (hyaluronan): a review. Vet Med-Czech 53:397–411. doi: not availableGoogle Scholar
  8. 8.
    Zhang LR, Underhill, CB, Chen, LP (1995) Hyaluronan on the surface of tumor cells is correlated with metastatic behaviour. Cancer Res 55:428–433. doi: not availableGoogle Scholar
  9. 9.
    Mizrahy, S., Rebe Raz, S., Hasgaard, M., Liu, H., Soffer-Tsur, N., Cohen, K., et al. (2011). Hyaluronan-coated nanoparticles: the influence of the molecular weight on CD44-hyaluronan interactions and on the immune response. Journal of Controlled Release, 156, 231–238. doi: 10.1016/j.jconrel.2011.06.031.CrossRefGoogle Scholar
  10. 10.
    Fujimoto, T., Kawashima, H., Tanaka, T., Hirose, M., Toyama-Sorimachi, N., Matsuzawa, Y., et al. (2001). CD44 binds a chondroitin sulfate proteoglycan, aggrecan. International Immunology, 13, 359–366. doi: 10.1093/intimm/13.3.359.CrossRefGoogle Scholar
  11. 11.
    Toyamasorimachi, N., Sorimachi, H., Tobita, Y., Kitamura, F., Yagita, H., Suzuki, K., et al. (1995). A novel ligand for CD44 is serglycin, a hematopoietic-cell lineage-specific proteoglycan—possible involvement in lymphoid cell adherence and activation. Journal of Biological Chemistry, 270, 7437–7444. doi: 10.1074/jbc.270.13.7437.CrossRefGoogle Scholar
  12. 12.
    Lamontagne, C.-A., & Grandbois, M. (2008). PKC-induced stiffening of hyaluronan/CD44 linkage; local force measurements on glioma cells. Experimental Cell Research, 314, 227–236. doi: 10.1016/j.yexcr.2007.07.013.CrossRefGoogle Scholar
  13. 13.
    Lamontagne, C.-A., Plante, G. E., Grandbois, M. (2011). Characterization of hyaluronic acid interaction with calcium oxalate crystals: implication of crystals faces, pH and citrate. Journal of Molecular Recognition, 24, 733–740. doi: 10.1002/jmr.1110.CrossRefGoogle Scholar
  14. 14.
    Raman, P. S., Alves, C. S., Wirtz, D., Konstantopoulos, K. (2012). Distinct kinetic and molecular requirements govern CD44 binding to hyaluronan versus fibrin(ogen). Biophysical Journal, 103, 415–423. doi: 10.1016/j.bpj.2012.06.039.CrossRefGoogle Scholar
  15. 15.
    Butt, H. J., Cappella, B., Kappl, M. (2005). Force measurements with the atomic force microscope: technique, interpretation and applications. Surface Science Reports, 59, 1–152. doi: 10.1016/j.surfrep.2005.08.003.CrossRefGoogle Scholar
  16. 16.
    Evans E, Ritchie, K (1997) Dynamic strength of molecular adhesion bonds. Biophys J 72:1541–1555. doi:Google Scholar
  17. 17.
    Evans, E. B. (1999). Looking inside molecular bonds at biological interfaces with dynamic force spectroscopy. Biophysical Chemistry, 82, 83–97. doi: 10.1016/s0301-4622(99)00108-8.CrossRefGoogle Scholar
  18. 18.
    Martens, A. A., Besseling, N. A. M., Rueb, S., Sudhölter, E. J. R., Spaink, H. P., de Smet, L. C. P. M. (2011). Random scission of polymers: numerical simulations, and experiments on hyaluronan hydrolysis. Macromol, 44, 2559–2567. doi: 10.1021/ma200009y.CrossRefGoogle Scholar
  19. 19.
    Banerji, S., Wright, A. J., Noble, M., Mahony, D. J., Campbell, I. D., Day, A. J., et al. (2007). Structures of the Cd44–hyaluronan complex provide insight into a fundamental carbohydrate protein interaction. Nature Structural and Molecular Biology, 14, 234–239. doi: 10.1038/nsmb1201.CrossRefGoogle Scholar
  20. 20.
    Attili, S., & Richter, R. P. (2012). Combining colloidal probe atomic force and reflection interference contrast microscopy to study the compressive mechanics of hyaluronan brushes. Langmuir, 28, 3206–3216. doi: 10.1021/la204602n.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Aernout A. Martens
    • 1
  • Marcel Bus
    • 1
  • Peter C. Thüne
    • 2
    • 4
  • Tjerk H. Oosterkamp
    • 3
  • Louis C. P. M. de Smet
    • 1
  1. 1.Department of Chemical EngineeringDelft University of TechnologyDelftThe Netherlands
  2. 2.Department of Chemical Engineering and Chemistry, Catalysis & EnergyEindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.Kamerling Onnes LaboratoryLeiden UniversityLeidenThe Netherlands
  4. 4.EindhovenThe Netherlands

Personalised recommendations