Advertisement

BioNanoScience

, Volume 4, Issue 2, pp 166–179 | Cite as

Nano-Crossbar Memories Comprising Parallel/Serial Complementary Memristive Switches

  • Ioannis Vourkas
  • Georgios Ch. Sirakoulis
Article

Abstract

This work explores anti-serial (anti-parallel) memristive switches—ASMs (APMs)—as potential cross-point elements in nano-crossbar resistive random access memory arrays. The memory operation principles for both device combinations are shown in detail. The effectiveness of these memristive structures to the solution of the parasitic conducting (current sneak paths) problem is presented via an analytical approach which is based on the basic setup of resistive crossbar memories. Simulation results of crossbars of up to 4,096 elements, arranged in quadratic configurations, are conducted. The provided results supplement this comprehensive analysis of APMs and ASMs, outlining their overall performance characteristics and commenting on their applicability to the practical realization of large crossbar memory systems. Finally, a special array topology is applied to an ASM-based crossbar memory. Its performance is compared to the performance of the pure ASM-based memory. The conducted simulations reveal significantly improved read-out voltage margins which further contribute to addressing the parasitic current paths which prevent the reliable operation of memristive crossbar circuit topologies.

Keywords

Memristor Nano-electronics Crossbar Current sneak paths Resistive random access memory 

Notes

Acknowledgments

This work was supported in part by a scholarship from the Bodossaki Foundation in Greece.

References

  1. 1.
    Wright, C. D., Liu, Y., Kohary, K. I., Aziz, M. M., Hicken, R. J. (2011). Arithmetic and biologically-inspired computing using phase-change materials. Advanced Materials, 23, 3408–3413.CrossRefGoogle Scholar
  2. 2.
    Waser, R. (2009). Resistive non-volatile memory devices (Invited Paper). Microelectronic Engineering, 7–9, 1925–1928.CrossRefGoogle Scholar
  3. 3.
    Wong, H.-S. P., Lee, H.-Y., Yu, S., Chen, Y.-S., Wu, Y., Chen, P.-S., et al. (2012). Metal-Oxide RRAM. Proceedings of the IEEE, 6, 1951–1970.CrossRefGoogle Scholar
  4. 4.
    Chua, L. O. (2011). Resistance switching memories are memristors. Applied Physics, 4, 765–783.CrossRefGoogle Scholar
  5. 5.
    Chua, L. O. (1971). Memristor—the missing circuit element. IEEE Trans Circuit Theory, 18, 507–519.CrossRefGoogle Scholar
  6. 6.
    Strukov, D. B., Snider, G. S., Stewart, D. R., Williams, R. S. (2008). The missing memristor found. Nature, 453, 80–83.CrossRefGoogle Scholar
  7. 7.
    Sacchetto, D., Doucey, M.-A., De Micheli, G., Leblebici, Y., Carrara, S. (2011). New insight on bio-sensing by nano-fabricated memristors. BioNanoScience, 1–2, 1–3.CrossRefGoogle Scholar
  8. 8.
    Vourkas, I., & Sirakoulis, G. C. (2013). Recent progress and patents on computational structures and methods with memristive devices. Recent Patents on Electrical & Electronic Engineering, 2, 101–116.CrossRefGoogle Scholar
  9. 9.
    Erokhin, V., Berzina, T., Camorani, P., Smerieri, A., Vavoulis, D., Feng, J., et al. (2011). Material memristive device circuits with synaptic plasticity: learning and memory. BioNanoScience, 1–2, 24–30.CrossRefGoogle Scholar
  10. 10.
    Howard, G., Gale, E., Bull, L., de Lacy, C. B., Adamatzky, A. (2012). Evolution of plastic learning in spiking networks via memristive connections. IEEE Trans Evolutionary Computation, 5, 711–729.CrossRefGoogle Scholar
  11. 11.
    Erokhin, V., Howard, G. D., Adamatzky, A. (2012). Organic memristor devices for logic elements with memory. International Journal of Bifurcation and Chaos, 11, 1250283.CrossRefMathSciNetGoogle Scholar
  12. 12.
    Manem, H., Rajendran, J., Rose, G. S. (2012). Design considerations for multilevel CMOS/nano memristive memory. ACM Journal on Emerging Technologies in Computing Systems, 1–6, 1–22.CrossRefGoogle Scholar
  13. 13.
    Lehtonen, E., Poikonen, J. H., Laiho, M., Kanerva, P. (2013). Large-scale memristive associative memories. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. doi: 10.1109/TVLSI.2013.2250319.Google Scholar
  14. 14.
    Eshraghian, K., Cho, K.-R., Kavehei, O., Kang, S.-K., Abbott, D., Kang, S.-M. S. (2011). Memristor MOS content addressable memory (MCAM): hybrid architecture for future high performance search engines. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 8, 1407–1416.CrossRefGoogle Scholar
  15. 15.
    Gaillardon, P.-E., Sacchetto, D., Beneventi, G. B., Ben Jamaa, M. H., Perniola, L., Clermidy, F., et al. (2013). Design and architectural assessment of 3-D resistive memory technologies in FPGAs. IEEE Transactions on Nanotechnology, 1, 40–50.CrossRefGoogle Scholar
  16. 16.
    Hussaina, W., & Jahinuzzaman, S. M. (2012). A read-decoupled gated-ground SRAM architecture for low-power embedded memories. Integration, the VLSI Journal (Special Issue of GLSVLSI 2011: Current Trends on VLSI and Ultra Low-Power Design), 3, 229–236.Google Scholar
  17. 17.
    International Technology Roadmap for Semiconductors (2013) [Online]: http://www.itrs.net/ Accessed 24 December 2013.
  18. 18.
    Heath, J. R., Kuekes, P. J., Snider, G. S., Williams, R. S. (1998). A defect-tolerant computer architecture: opportunities for nanotechnology. Science, 280, 1716–1721.CrossRefGoogle Scholar
  19. 19.
    Zidan, M. A., Fahmy, H. A. H., Hussain, M. M., Salama, K. N. (2013). Memristor-based memory: the sneak paths problem and solutions. Microelectronics Journal, 2, 176–183.CrossRefGoogle Scholar
  20. 20.
    Lee, M.-J., Park, Y., Kang, B.-S., Ahn, S.-E., Lee, C. B., Kim, K., et al. (2007). 2-stack 1D–1R cross-point structure with oxide diodes as switch elements for high density resistance RAM applications (pp. 771–774). Washington, DC: IEEE Int Elec Dev Meeting (IEDM 2007).Google Scholar
  21. 21.
    Fei, W., Yu, H., Zhang, W., Yeo, K. S. (2012). Design exploration of hybrid CMOS and memristor circuit by new modified nodal analysis. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 6, 1012–1025.CrossRefGoogle Scholar
  22. 22.
    Kim, K.-H., Gaba, S., Wheeler, D., Cruz-Albrecht, J. M., Hussain, T., Srinivasa, N., et al. (2012). A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Letters, 1, 389–395.CrossRefGoogle Scholar
  23. 23.
    Kim, S., Jeong, H. Y., Kim, S. K., Choi, S.-Y., Lee, K. J. (2011). Flexible memristive memory array on plastic substrates. Nano Letters, 12, 5438–5442.CrossRefGoogle Scholar
  24. 24.
    Shin, J., Kim, I., Biju, K. P., Jo, M., Park, J., Lee, J., et al. (2011). TiO2-based metal—insulator—metal selection device for bipolar resistive random access memory cross-point application. Journal of Applied Physics, 3, 033712.CrossRefGoogle Scholar
  25. 25.
    Linn, E., Rosezin, R., Kugeler, C., Waser, R. (2010). Complementary resistive switches for passive nanocrossbar memories. Nature Materials, 5, 403–406.CrossRefGoogle Scholar
  26. 26.
    Liu, T., Kang, Y., Verma, M., Orlowski, M. K. (2012). Switching characteristics of antiparallel resistive switches. IEEE Transactions on Electron Devices Letters, 3, 429–431.CrossRefGoogle Scholar
  27. 27.
    Vourkas, I., & Sirakoulis, G. C. (2012). A novel design and modeling paradigm for memristor-based crossbar circuits. IEEE Transactions on Nanotechnology, 6, 1151–1159.CrossRefGoogle Scholar
  28. 28.
    Vourkas, I., Stathis, D., Sirakoulis, G. C. (2013). Improved read voltage margins with alternative topologies for memristor-based crossbar memories (pp. 364–367). Istanbul: Proc 21st IFIP/IEEE Int Conf Very Large Scale Integr (VLSI-SoC 2013).Google Scholar
  29. 29.
    Tappertzhofen, S., Linn, E., Nielen, L., Rosezin, R., Lentz, F., Bruchhaus, R., et al. (2011). Capacity based nondestructive readout for complementary resistive switches. Nanotechnology, 39, 395203.CrossRefGoogle Scholar
  30. 30.
    Vourkas, I., & Sirakoulis, G. C. (2013). On the analog computational characteristics of memristive networks in 2013 (pp. 309–312). Abu Dhabi: IEEE Int Conf Electronics, Circuits, and Systems (ICECS 2013).Google Scholar
  31. 31.
    Pershin, Y. V., & Di Ventra, M. (2011). Memory effects in complex materials and nanoscale systems. Advances in Physics, 2, 145–227.CrossRefGoogle Scholar
  32. 32.
    Mustafa, J., & Waser, R. (2006). A novel reference scheme for reading passive resistive crossbar memories. IEEE Transactions on Nanotechnology, 6, 687–691.CrossRefGoogle Scholar
  33. 33.
    Flocke, A., & Noll, T. G. (2007). Fundamental analysis of resistive nano-crossbars for the use in hybrid nano/CMOS-memory (pp. 328–331). Munich: 33rd European Conf Solid State Circuits (ESSCIRC 2007).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Laboratory of Electronics, Department of Electrical and Computer EngineeringDemocritus University of ThraceXanthiGreece

Personalised recommendations