, Volume 4, Issue 2, pp 97–103 | Cite as

Non-covalent Immobilization of Desmoplakin Plakin Domain Molecules by Size-Selected Clusters for AFM Imaging

  • P. Rodríguez-Zamora
  • J. Barreto
  • F. Yin
  • R. E. Palmer


We exploit the immobilization of proteins by size-selected atomic gold clusters to examine the plakin domain of desmoplakin (PD), a human desmosomal protein that is mutated in severe skin diseases and cardiomyopathy, using atomic force microscopy (AFM) in the liquid phase. Contact mode AFM indicates that the PD does not establish a covalent bond size-selected gold nanocluster supported on a graphite substrate, but tapping mode AFM images indicate enhanced weak adsorption. The protein dimensions obtained are compared with predicted values based on electron microscopy, small-angle X-ray scattering (SAXS) and X-ray crystallographic studies.


Atomic force microscopy Desmoplakin plakin domain Size-selected clusters Protein immobilization 



We thank Dr. M. Chidgey and Dr. C. Al-Jassar, from the School of Cancer Sciences, University of Birmingham, for providing the desmoplakin PD protein, and Dr. T.L. Pan and M. Dowle from NPRL for sample preparation training and AFM laboratory supportive work, respectively. The authors gratefully acknowledge the Mexican National Council of Science and Technology (CONACyT) for PhD studentship funding and EPSRC.


  1. 1.
    Mahmoudi, M., Lynch, I., Reza Ejtehadi, M., Monopoli, M. P., Baldelli Bombelli, F., Laurent, S. (2011). Chemical Reviews, 111, 5610.CrossRefGoogle Scholar
  2. 2.
    Bartlett, A. I., & Radford, S. E. (2009). Nature Structural and Molecular Biology, 16, 582.CrossRefGoogle Scholar
  3. 3.
    Santos, S., Barcons, V., Christenson, H. K., Font, J., Thomson, N. H. (2011). PLoS ONE, 6, e23821.CrossRefGoogle Scholar
  4. 4.
    Santos, N. C., & Castanho, M. A. R. B. (2004). Biophysical Chemistry, 107, 133.CrossRefGoogle Scholar
  5. 5.
    Ho, R., Shao, Z., Mou, J., Sheng, S. J. (1996). Biophys. J., 71, 2213.CrossRefGoogle Scholar
  6. 6.
    Blackley, H. K. L., Sanders, G. H. W., Davies, M. C., Roberts, C. J., Tendler, S. J. B., Wilkinson, M. J. (2000). Journal of Molecular Biology, 298, 833.CrossRefGoogle Scholar
  7. 7.
    Dobson, C. M. (2003). Nature, 426, 884.CrossRefGoogle Scholar
  8. 8.
    Muller, D. J., & Engel, A. (2007). Nature Protocols, 2, 2191.CrossRefGoogle Scholar
  9. 9.
    del Rio, A., Perez-Jimenez, R., Liu, R., Roca-Cusachs, P., Fernandez, J. M., Sheetz, M. P. (2009). Science, 323, 638.CrossRefGoogle Scholar
  10. 10.
    Radmacher, M., Tillmann, R. W., Fritz, M., Gaub, H. E. (1992). Science, 257, 1900.CrossRefGoogle Scholar
  11. 11.
    Yamashita, H., Taoka, A., Uchihashi, T., Asano, T., Ando, T., Fukumori, Y. (2012). Journal of Molecular Biology, 422, 300.CrossRefGoogle Scholar
  12. 12.
    Patel, N., Davies, M. C., Hartshorne, M., Heaton, R. J., Roberts, C. J., Tendler, S. J. B., et al. (1997). Langmuir, 13, 6485.CrossRefGoogle Scholar
  13. 13.
    Hansma, H. G., & Hoh, J. H. (1994). Annual Review of Biophysics and Biomolecular Structure, 23, 115.CrossRefGoogle Scholar
  14. 14.
    Collins, J. A., Xirouchaki, C., Palmer, R. E., Heath, J. K., Jones, C. H. (2004). Applied Surface Science, 226, 197.CrossRefGoogle Scholar
  15. 15.
    Palmer, R. E., Pratontep, S., Boyen, H. G. (2003). Nature Materials, 2, 443.CrossRefGoogle Scholar
  16. 16.
    Leung, C., Xirouchaki, C., Berovic, N., Palmer, R. E. (2004). Advanced Materials, 16, 223.CrossRefGoogle Scholar
  17. 17.
    Ryu, J. H., Kim, H. Y., Kim, D. H., Seo, D. H., Lee, H. M. (2010). Journal of Physical Chemistry C, 114, 2022.CrossRefGoogle Scholar
  18. 18.
    Bourg, M. C., Badia, A., Lennox, R. B. (2000). Journal of Physical Chemistry B, 104, 6562.CrossRefGoogle Scholar
  19. 19.
    Castner, D. G., Hinds, K., Grainger, D. W. (1996). Langmuir, 12, 5083.CrossRefGoogle Scholar
  20. 20.
    Parry, D. A. D., Green, K. J., Leung, C. L., Liem, R. K. H. (2001). Journal of Cell Science, 114, 3409.Google Scholar
  21. 21.
    McHarg, S., Garrod, D. R., Thomanson, H. A., Scothern, A. (2010). Biochemical Journal, 429, 419.CrossRefGoogle Scholar
  22. 22.
    Choi, H. J., & Weis, W. I. (2011). Journal of Molecular Biology, 409, 800.CrossRefGoogle Scholar
  23. 23.
    Al-Jassar, C., Knowles, T., Jeeves, M., Kami, K., Behr, E., Bikker, H., et al. (2011). Journal of Molecular Biology, 411, 1049.CrossRefGoogle Scholar
  24. 24.
    Leung, C. L., Green, K. J., Liem, R. K. H. (2002). Trends in Cell Biology, 12, 37.CrossRefGoogle Scholar
  25. 25.
    Stokes, D. L. (2007). Current Opinion in Cell Biology, 19, 565.CrossRefGoogle Scholar
  26. 26.
    Janda, L., Damborsky, J., Rezniczek, G. A., Wiche, G. (2001). BioEssays, 23, 1064.CrossRefGoogle Scholar
  27. 27.
    O’Keefe, E. J., Erickson, H. P., Bennett, V. (1989). Journal of Biological Chemistry, 264, 8310.Google Scholar
  28. 28.
    Schmitz, I., Shreiner, M., Friedbacher, G., Grasserbauer, M. (1997). Analytical Chemistry, 69, 1012.CrossRefGoogle Scholar
  29. 29.
    Abdelhady, H. G., Allen, S., Ebbens, S. J., Madden, C., Patel, N., Roberts, C. J., et al. (2005). Nanotechnology, 16, 966.CrossRefGoogle Scholar
  30. 30.
    Dietzel, D., Monninghoff, T., Jansen, L., Fuchs, H., Ritter, C., et al. (2007). Journal of Applied Physics, 102, 084306.CrossRefGoogle Scholar
  31. 31.
    Lidgi-Guigui, N., Leung, C., Palmer, R. E. (2007). Surface Science, 602, 1006.CrossRefGoogle Scholar
  32. 32.
    Zhong, Q., Inniss, D., Kjoller, K., Elings, V. B. (1993). Surface Science Letters, 290, L688.CrossRefGoogle Scholar
  33. 33.
    Sahin, O., & Erina, N. (2008). Nanotechnology, 19, 445717.CrossRefGoogle Scholar
  34. 34.
    Yang, C. W., Hwang, I. S., Chen, Y. F., Chang, C. S., Tsai, D. P. (2007). Nanotechnology, 18, 084009.CrossRefGoogle Scholar
  35. 35.
    Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M., Gaub, H. E. (1997). Science, 276, 1109.CrossRefGoogle Scholar
  36. 36.
    Forman, J. R., Qamar, S., Paci, E., Sandford, R. N., Clarke, J. (2005). Journal of Molecular Biology, 349, 861.CrossRefGoogle Scholar
  37. 37.
    Pratontep, S., Carroll, S. J., Xirouchaki, C., Streun, M., Palmer, R. E. (2005). Review of Scientific Instruments, 76, 045103.CrossRefGoogle Scholar
  38. 38.
    Von Issendorff, B., & Palmer, R. E. (1999). Review of Scientific Instruments, 70, 4497.CrossRefGoogle Scholar
  39. 39.
    Daniel, M., & Astruc, D. (2004). Chemical Reviews, 104, 293.CrossRefGoogle Scholar
  40. 40.
    Di Vece, M., Palomba, S., Palmer, R. E. (2005). Physical Review B, 72, 073407.CrossRefGoogle Scholar
  41. 41.
    Carroll, S. J., Pratontep, S., Streun, M., Palmer, R. E., Hobday, S., Smith, R. (2000). Journal of Chemical Physics, 113, 7723.CrossRefGoogle Scholar
  42. 42.
    Fotiadis, D., Scheuring, S., Muller, S. A., Engel, A., Muller, D. J. (2002). Micron, 33, 385.CrossRefGoogle Scholar
  43. 43.
    Sandberg, W. C., Wang, G. M., Kenny, S. D. (2006). Nanotechnology, 17, 4819.CrossRefGoogle Scholar
  44. 44.
    Rief, M., Clausen-Schaumann, H., Gaub, H. E., Grandbois, M., Beyer, M. (1999). Science, 283, 1727.CrossRefGoogle Scholar
  45. 45.
    Silin, V., Weetall, H., Vanderah, D. J. (1997). Journal of Colloid and Interface Science, 185, 94.CrossRefGoogle Scholar
  46. 46.
    Palmer, R. E., & Leung, C. (2007). Trends in Biotechnology, 25, 48.CrossRefGoogle Scholar
  47. 47.
    Lojou, E., & Bianco, P. (2004). Langmuir, 20, 748.CrossRefGoogle Scholar
  48. 48.
    Queiroz, J. A., Tomaz, C. T., Cabral, J. M. S. (2001). Journal of Biotechnology, 87, 143.CrossRefGoogle Scholar
  49. 49.
    Hofstee, B. H. J. (1975). Biochemical and Biophysical Research Communications, 63, 618.CrossRefGoogle Scholar
  50. 50.
    Butler, L. G. (1975). Archives of Biochemistry and Biophysics, 171, 645.CrossRefGoogle Scholar
  51. 51.
    Rossell, J. P., Allen, S., Davies, M. C., Roberts, C. J., Tendler, S. J. B., Williams, P. M. (2003). Ultramicroscopy, 96, 37.CrossRefGoogle Scholar
  52. 52.
    Senden, T. J., & Drummond, C. J. (1995). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 94, 29.CrossRefGoogle Scholar
  53. 53.
    Roach, P., Farrar, D., Perry, C. C. (2005). Journal of the American Chemical Society, 127, 8168.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • P. Rodríguez-Zamora
    • 1
  • J. Barreto
    • 1
  • F. Yin
    • 1
  • R. E. Palmer
    • 1
  1. 1.Nanoscale Physics Research Laboratory, School of Physics and AstronomyUniversity of BirminghamBirminghamUK

Personalised recommendations