Advertisement

BioNanoScience

, Volume 2, Issue 4, pp 266–276 | Cite as

Microwell Regulation of Pluripotent Stem Cell Self-Renewal and Differentiation

  • Cheston Hsiao
  • Sean P. PalecekEmail author
Article

Abstract

The fates of pluripotent stem cells (PSCs), including survival, self-renewal, and differentiation, are regulated by chemical and mechanical cues presented in the three-dimensional (3D) microenvironment. Most PSC studies have been performed on 2D substrates. However, 3D culture systems have demonstrated the importance of intercellular interactions in regulating PSC self-renewal and differentiation. Microwell culture systems have been developed to generate homogenous PSC colonies of defined sizes and shapes and to study how colony morphology affects cell fate. Using microwells, researchers have demonstrated that PSCs remain in a self-renewing undifferentiated state as a result of autocrine and paracrine signaling. Other studies have shown that microwell regulation of embryoid body size affects lineage commitment during differentiation via cell–cell contact and expression of soluble signals. In this review, we discuss recent advances in the design and utilization of 3D microwell platforms for studying intercellular regulation of PSC cell fate decisions and the underlying molecular mechanisms.

Keywords

Microwells Pluripotent stem cells 3D microenvironment Cell fate 

Notes

Acknowledgments

This work was supported by NIH grant R01 EB007534 and NSF grant EFRI 0735903. We thank Samira Azarin for assistance in figure preparation.

References

  1. 1.
    Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences, 78(12), 7634–7638.CrossRefGoogle Scholar
  2. 2.
    Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154–156.CrossRefGoogle Scholar
  3. 3.
    Thomson, J. A. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.CrossRefGoogle Scholar
  4. 4.
    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.CrossRefGoogle Scholar
  5. 5.
    Kraehenbuehl, T. P., Langer, R., Ferreira, L. S. (2011). Three-dimensional biomaterials for the study of human pluripotent stem cells. Nature methods, 8(9), 731–736.CrossRefGoogle Scholar
  6. 6.
    Burdick, J., & Vunjak-Novakovic, G. (2009). Engineered microenvironments for controlled stem cell differentiation. Tissue engineering Part A, 15(2), 205–219.CrossRefGoogle Scholar
  7. 7.
    Bratt-Leal, A. M., Carpenedo, R. L., McDevitt, T. C. (2009). Engineering the embryoid body microenvironment to direct embryonic stem cell differentiation. Biotechnology progress, 25(1), 43–51.CrossRefGoogle Scholar
  8. 8.
    Keung, A. J., Kumar, S., Schaffer, D. V. (2010). Presentation counts: microenvironmental regulation of stem cells by biophysical and material cues. Annual review of cell and developmental biology, 26, 533–556.CrossRefGoogle Scholar
  9. 9.
    Keung, A. J., Healy, K. E., Kumar, S., Schaffer, D. V. (2010). Biophysics and dynamics of natural and engineered stem cell microenvironments. Wiley interdisciplinary reviews Systems biology and medicine, 2(1), 49–64.CrossRefGoogle Scholar
  10. 10.
    Peerani, R., & Zandstra, P. W. (2010). Enabling stem cell therapies through synthetic stem cell-niche engineering. The Journal of clinical investigation, 120(1), 60–70.CrossRefGoogle Scholar
  11. 11.
    Hoffman, L. M., & Carpenter, M. K. (2005). Characterization and culture of human embryonic stem cells. Nature biotechnology, 23(6), 699–708.CrossRefGoogle Scholar
  12. 12.
    Ulloa-Montoya, F., Verfaillie, C. M., Hu, W.-S. (2005). Culture systems for pluripotent stem cells. Journal of Bioscience and Bioengineering, 100(1), 12–27.CrossRefGoogle Scholar
  13. 13.
    Ludwig, T. E., Levenstein, M. E., Jones, J. M., et al. (2006). Derivation of human embryonic stem cells in defined conditions. Nature biotechnology, 24(2), 185–187.CrossRefGoogle Scholar
  14. 14.
    Wang, L., Schulz, T. C., Sherrer, E. S., et al. (2007). Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood, 110(12), 4111–4119.CrossRefGoogle Scholar
  15. 15.
    Chen, G., Gulbranson, D. R., Hou, Z., et al. (2011). Chemically defined conditions for human iPSC derivation and culture. Nature methods, 8(5), 424–429.CrossRefGoogle Scholar
  16. 16.
    Ying, Q.-L., Wray, J., Nichols, J., Batlle-Morera, L., Doble, B., Woodgett, J., et al. (2008). The ground state of embryonic stem cell self-renewal. Nature, 453(7194), 519–523.CrossRefGoogle Scholar
  17. 17.
    Moore, K., & Lemischka, I. R. (2006). Stem cells and their niches. Science, 311(5769), 1880–1885.CrossRefGoogle Scholar
  18. 18.
    Davey, R. E., & Zandstra, P. W. (2006). Spatial organization of embryonic stem cell responsiveness to autocrine gp130 ligands reveals an autoregulatory stem cell niche. Stem Cells, 24(11), 2538–2548.CrossRefGoogle Scholar
  19. 19.
    Peerani, R., Rao, B. M., Bauwens, C., Yin, T., Wood, G., Nagy, A., et al. (2007). Niche-mediated control of human embryonic stem cell self-renewal and differentiation. The EMBO journal, 26(22), 4744–4755.CrossRefGoogle Scholar
  20. 20.
    Przybyla, L. M., & Voldman, J. (2012). Attenuation of extrinsic signaling reveals the importance of matrix remodeling on maintenance of embryonic stem cell self-renewal. Proceedings of the National Academy of Sciences of the United States of America, 109(3), 835–840.CrossRefGoogle Scholar
  21. 21.
    Moledina, F., Clarke, G., Oskooei, A., Onishi, K., Günther, A., Zandstra, P. W. (2012). Predictive microfluidic control of regulatory ligand trajectories in individual pluripotent cells. Proceedings of the National Academy of Sciences of the United States of America, 109(9), 3264–3269.CrossRefGoogle Scholar
  22. 22.
    Siti-Ismail, N., Bishop, A. E., Polak, J. M., Mantalaris, A. (2008). The benefit of human embryonic stem cell encapsulation for prolonged feeder-free maintenance. Biomaterials, 29(29), 3946–3952.CrossRefGoogle Scholar
  23. 23.
    Peerani, R., Onishi, K., Mahdavi, A., Kumacheva, E., Zandstra, P. W. (2009). Manipulation of signaling thresholds in “engineered stem cell niches” identifies design criteria for pluripotent stem cell screens. PloS one, 4(7), e6438.CrossRefGoogle Scholar
  24. 24.
    ten Berge, D., Koole, W., Fuerer, C., Fish, M., Eroglu, E., Nusse, R. (2008). Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell stem cell, 3(5), 508–518.CrossRefGoogle Scholar
  25. 25.
    Fuchs, C., Scheinast, M., Pasteiner, W., Lagger, S., Hofner, M., Hoellrigl, A., et al. (2012). Self-organization phenomena in embryonic stem cell-derived embryoid bodies: axis formation and breaking of symmetry during cardiomyogenesis. Cells, Tissues, Organs, 195(5), 377–391.CrossRefGoogle Scholar
  26. 26.
    Dvash, T., Sharon, N., Yanuka, O., Benvenisty, N. (2007). Molecular analysis of LEFTY-expressing cells in early human embryoid bodies. Stem Cells, 25(2), 465–472.CrossRefGoogle Scholar
  27. 27.
    Eiraku, M., Takata, N., Ishibashi, H., Kawada, M., Sakakura, E., Okuda, S., et al. (2011). Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature, 472(7341), 51–56.CrossRefGoogle Scholar
  28. 28.
    Watanabe, K., Kamiya, D., Nishiyama, A., Katayama, T., Nozaki, S., Kawasaki, H., et al. (2005). Directed differentiation of telencephalic precursors from embryonic stem cells. Nature neuroscience, 8(3), 288–296.CrossRefGoogle Scholar
  29. 29.
    Watanabe, K., Ueno, M., Kamiya, D., et al. (2007). A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nature biotechnology, 25(6), 681–686.CrossRefGoogle Scholar
  30. 30.
    Kurosawa, H. (2007). Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. Journal of bioscience and bioengineering, 103(5), 389–398.CrossRefGoogle Scholar
  31. 31.
    Chadwick, K., Wang, L., Li, L., Menendez, P., Murdoch, B., Rouleau, A., et al. (2003). Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood, 102(3), 906–915.CrossRefGoogle Scholar
  32. 32.
    Maltsev, V. A., Wobus, A. M., Rohwedel, J., Bader, M., Hescheler, J. (1994). Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circulation Research, 75(2), 233–244.CrossRefGoogle Scholar
  33. 33.
    Eiraku, M., Watanabe, K., Matsuo-Takasaki, M., Kawada, M., Yonemura, S., Matsumura, M., et al. (2008). Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell stem cell, 3(5), 519–532.CrossRefGoogle Scholar
  34. 34.
    Ng, E. S., Davis, R. P., Azzola, L., Stanley, E. G., Elefanty, A. G. (2005). Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood, 106(5), 1601–1603.CrossRefGoogle Scholar
  35. 35.
    Li, N., Tourovskaia, A., Folch, A. (2003). Biology on a chip: microfabrication for studying the behavior of cultured cells. Critical reviews in biomedical engineering, 31(5–6), 423–488.CrossRefGoogle Scholar
  36. 36.
    Mohr, J. C., de Pablo, J. J., Palecek, S. P. (2006). 3-D microwell culture of human embryonic stem cells. Biomaterials, 27(36), 6032–6042.CrossRefGoogle Scholar
  37. 37.
    Khademhosseini, A., Ferreira, L., Blumling, J., Yeh, J., Karp, J. M., Fukuda, J., et al. (2006). Co-culture of human embryonic stem cells with murine embryonic fibroblasts on microwell-patterned substrates. Biomaterials, 27(36), 5968–5977.CrossRefGoogle Scholar
  38. 38.
    Karp, J. M., Yeh, J., Eng, G., et al. (2007). Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells. Lab on a chip, 7(6), 786–794.CrossRefGoogle Scholar
  39. 39.
    Moeller, H.-C., Mian, M. K., Shrivastava, S., Chung, B. G., Khademhosseini, A. (2008). A microwell array system for stem cell culture. Biomaterials, 29(6), 752–763.CrossRefGoogle Scholar
  40. 40.
    Park, J., Cho, C. H., Parashurama, N., Li, Y., Berthiaume, F., Toner, M., et al. (2007). Microfabrication-based modulation of embryonic stem cell differentiation. Lab on a chip, 7(8), 1018–1028.CrossRefGoogle Scholar
  41. 41.
    Ungrin, M. D., Joshi, C., Nica, A., Bauwens, C., Zandstra, P. W. (2008). Reproducible, ultra high-throughput formation of multicellular organization from single cell suspension-derived human embryonic stem cell aggregates. PloS one, 3(2), e1565.CrossRefGoogle Scholar
  42. 42.
    Yukawa, H., Noguchi, H., Hayashi, S. (2011). Embryonic body formation using the tapered soft stencil for cluster culture device. Biomaterials, 32(15), 3729–3738.CrossRefGoogle Scholar
  43. 43.
    Kang, L., Hancock, M. J., Brigham, M. D., Khademhosseini, A. (2010). Cell confinement in patterned nanoliter droplets in a microwell array by wiping. Journal of biomedical materials research Part A, 93(2), 547–557.Google Scholar
  44. 44.
    Nguyen, D., Sa, S., Pegan, J. D., Rich, B., Xiang, G., McCloskey, K. E., et al. (2009). Tunable shrink-induced honeycomb microwell arrays for uniform embryoid bodies. Lab on a chip, 9(23), 3338–3344.CrossRefGoogle Scholar
  45. 45.
    Choi, Y. Y., Chung, B. G., Lee, D. H., Khademhosseini, A., Kim, J.-H., Lee, S.-H. (2010). Controlled-size embryoid body formation in concave microwell arrays. Biomaterials, 31(15), 4296–4303.CrossRefGoogle Scholar
  46. 46.
    Sakai, Y., Yoshida, S., Yoshiura, Y., Mori, R., Tamura, T., Yahiro, K., et al. (2010). Effect of microwell chip structure on cell microsphere production of various animal cells. Journal of bioscience and bioengineering, 110(2), 223–229.CrossRefGoogle Scholar
  47. 47.
    Selimović, S., Piraino, F., Bae, H., Rasponi, M., Redaelli, A., Khademhosseini, A. (2011). Microfabricated polyester conical microwells for cell culture applications. Lab on a chip, 11(14), 2325–2332.CrossRefGoogle Scholar
  48. 48.
    Tekin, H., Anaya, M., Brigham, M. D., Nauman, C., Langer, R., Khademhosseini, A. (2010). Stimuli-responsive microwells for formation and retrieval of cell aggregates. Lab on a chip, 10(18), 2411–2418.CrossRefGoogle Scholar
  49. 49.
    Torisawa, Y., Chueh, B., Huh, D., Ramamurthy, P., Roth, T. M., Barald, K. F., et al. (2007). Efficient formation of uniform-sized embryoid bodies using a compartmentalized microchannel device. Lab on a chip, 7(6), 770–776.CrossRefGoogle Scholar
  50. 50.
    Kim, C., Lee, K. S., Bang, J. H., Kim, Y. E., Kim, M.-C., Oh, K. W., et al. (2011). 3-Dimensional cell culture for on-chip differentiation of stem cells in embryoid body. Lab on a chip, 11(5), 874–882.CrossRefGoogle Scholar
  51. 51.
    Khoury, M., Bransky, A., Korin, N., Konak, L. C., Enikolopov, G., Tzchori, I., et al. (2010). A microfluidic traps system supporting prolonged culture of human embryonic stem cells aggregates. Biomedical microdevices, 12(6), 1001–1008.CrossRefGoogle Scholar
  52. 52.
    Kang, E., Choi, Y. Y., Jun, Y., Chung, B. G., Lee, S.-H. (2010). Development of a multi-layer microfluidic array chip to culture and replate uniform-sized embryoid bodies without manual cell retrieval. Lab on a chip, 10(20), 2651–2654.CrossRefGoogle Scholar
  53. 53.
    Jeong, G. S., Jun, Y., Song, J. H., Shin, S. H., Lee, S.-H. (2012). Meniscus induced self organization of multiple deep concave wells in a microchannel for embryoid bodies generation. Lab on a chip, 12(1), 159–166.CrossRefGoogle Scholar
  54. 54.
    Hong, S.-H., Werbowetski-Ogilvie, T., Ramos-Mejia, V., Lee, J. B., Bhatia, M. (2010). Multiparameter comparisons of embryoid body differentiation toward human stem cell applications. Stem cell research, 5(2), 120–130.CrossRefGoogle Scholar
  55. 55.
    Burridge, P. W., Anderson, D., Priddle, H., Barbadillo Muñoz, M. D., Chamberlain, S., Allegrucci, C., et al. (2007). Improved human embryonic stem cell embryoid body homogeneity and cardiomyocyte differentiation from a novel V-96 plate aggregation system highlights interline variability. Stem Cells, 25(4), 929–938.CrossRefGoogle Scholar
  56. 56.
    Mohr, J. C., Zhang, J., Azarin, S. M., Soerens, A. G., de Pablo, J. J., Thomson, J., et al. (2010). The microwell control of embryoid body size in order to regulate cardiac differentiation of human embryonic stem cells. Biomaterials, 31(7), 1885–1893.CrossRefGoogle Scholar
  57. 57.
    Burridge, P. W., Thompson, S., Millrod, M., Weinberg, S., Yuan, X., Peters, A., et al. (2011). A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. PloS one, 6(4), e18293.CrossRefGoogle Scholar
  58. 58.
    Azarin, S. M., Larson, E., Almodóvar-Cruz, J. M., de Pablo, J. J., Palecek, S. P. (2012). Effects of 3D microwell culture on growth kinetics and metabolism of human embryonic stem cells. Biotechnology and Applied Biochemistry, 59(2), 88–96.CrossRefGoogle Scholar
  59. 59.
    Umen, J. G. (2005). The elusive sizer. Current opinion in cell biology, 17(4), 435–441.CrossRefGoogle Scholar
  60. 60.
    Koivusalo, M., Kapus, A., Grinstein, S. (2009). Sensors, transducers, and effectors that regulate cell size and shape. The Journal of biological chemistry, 284(11), 6595–6599.CrossRefGoogle Scholar
  61. 61.
    Hoffmann, E. K., Lambert, I. H., Pedersen, S. F. (2009). Physiology of cell volume regulation in vertebrates. Physiological reviews, 89(1), 193–277.CrossRefGoogle Scholar
  62. 62.
    Azarin, S. M., Lian, X., Larson, E., Popelka, H. M., de Pablo, J. J., Palecek, S. P. (2012). Modulation of Wnt/β-catenin signaling in human embryonic stem cells using a 3-D microwell array. Biomaterials, 33(7), 2041–2049.CrossRefGoogle Scholar
  63. 63.
    Soncin, F., & Ward, C. M. (2011). The function of E-cadherin in stem cell pluripotency and self-renewal. Genes, 2(1), 229–259.CrossRefGoogle Scholar
  64. 64.
    Harris, T. J. C., & Peifer, M. (2005). Decisions, decisions: beta-catenin chooses between adhesion and transcription. Trends in cell biology, 15(5), 234–237.CrossRefGoogle Scholar
  65. 65.
    Hwang, Y.-S., Chung, B. G., Ortmann, D., Hattori, N., Moeller, H.-C., Khademhosseini, A. (2009). Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proceedings of the National Academy of Sciences of the United States of America, 106(40), 16978–16983.CrossRefGoogle Scholar
  66. 66.
    Bauwens, C. L., Song, H., Thavandiran, N., Ungrin, M., Massé, S., Nanthakumar, K., et al. (2011). Geometric control of cardiomyogenic induction in human pluripotent stem cells. Tissue engineering Part A, 17(15–16), 1901–1909.CrossRefGoogle Scholar
  67. 67.
    Sun, Y., Chen, C. S., Fu, J. (2012). Forcing stem cells to behave: a biophysical perspective of the cellular microenvironment. Annual review of biophysics, 41, 519–542.CrossRefGoogle Scholar
  68. 68.
    Abbott, A. (2003). Cell culture: biology's new dimension. Nature, 424(6951), 870–872.CrossRefGoogle Scholar
  69. 69.
    Weaver, V. M. (1997). Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. The Journal of Cell Biology, 137(1), 231–245.MathSciNetCrossRefGoogle Scholar
  70. 70.
    Pampaloni, F., Reynaud, E. G., Stelzer, E. H. K. (2007). The third dimension bridges the gap between cell culture and live tissue. Nature reviews Molecular cell biology, 8(10), 839–845.CrossRefGoogle Scholar
  71. 71.
    Gobaa, S., Hoehnel, S., Roccio, M., Negro, A., Kobel, S., Lutolf, M. P. (2011). Artificial niche microarrays for probing single stem cell fate in high throughput. Nature methods, 8(11), 949–955.CrossRefGoogle Scholar
  72. 72.
    Lecault, V., Vaninsberghe, M., Sekulovic, S., et al. (2011). High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays. Nature methods, 8(7), 581–586.CrossRefGoogle Scholar
  73. 73.
    Dickinson, L. E., Kusuma, S., Gerecht, S. (2011). Reconstructing the differentiation niche of embryonic stem cells using biomaterials. Macromolecular bioscience, 11(1), 36–49.CrossRefGoogle Scholar
  74. 74.
    Purpura, K., Bratt-Leal, A. M., Hammersmith, K., McDevitt, T. C., Zandstra, P. W. (2012). Systematic engineering of 3D pluripotent stem cell niches to guide blood development. Biomaterials, 33(5), 1271–1280.CrossRefGoogle Scholar
  75. 75.
    Jing, D., Parikh, A., Tzanakakis, E. S. (2010). Cardiac cell generation from encapsulated embryonic stem cells in static and scalable culture systems. Cell transplantation, 19(11), 1397–1412.CrossRefGoogle Scholar
  76. 76.
    Qi, H., Du, Y., Wang, L., Kaji, H., Bae, H., Khademhosseini, A. (2010). Patterned differentiation of individual embryoid bodies in spatially organized 3D hybrid microgels. Advanced Materials, 22(46), 5276–5281.CrossRefGoogle Scholar
  77. 77.
    Kreutzer, J., Ylä-Outinen, L., Kärnä, P., Kaarela, T., Mikkonen, J., Skottman, H., et al. (2012). Structured PDMS chambers for enhanced human neuronal cell activity on MEA platforms. Journal of Bionic Engineering, 9(1), 1–10.CrossRefGoogle Scholar
  78. 78.
    Gallego-Perez, D., Higuita-Castro, N., Sharma, S., Reen, R. K., Palmer, A. F., Gooch, K. J., et al. (2010). High throughput assembly of spatially controlled 3D cell clusters on a micro/nanoplatform. Lab on a chip, 10(6), 775–782.CrossRefGoogle Scholar
  79. 79.
    Venugopal, J., Low, S., Choon, A. T., Ramakrishna, S. (2008). Interaction of cells and nanofiber scaffolds in tissue engineering. Journal of biomedical materials research Part B, Applied biomaterials, 84(1), 34–48.CrossRefGoogle Scholar
  80. 80.
    Leong, T. G., Randall, C. L., Benson, B. R., Zarafshar, A. M., Gracias, D. H. (2008). Self-loading lithographically structured microcontainers: 3D patterned, mobile microwells. Lab on a chip, 8(10), 1621–1624.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringUniversity of Wisconsin–MadisonMadisonUSA

Personalised recommendations