BioNanoScience

, Volume 2, Issue 3, pp 115–126 | Cite as

Nanotechnology-Based Biosensors and Diagnostics: Technology Push versus Industrial/Healthcare Requirements

  • Sandeep Kumar Vashist
  • A. G. Venkatesh
  • Konstantinos Mitsakakis
  • Gregor Czilwik
  • Günter Roth
  • Felix von Stetten
  • Roland Zengerle
Article

Abstract

There have been considerable advances in the field of nanotechnology-based biosensors and diagnostics (NBBD) during the last two decades. These include the production of nanomaterials (NMs), employing them for new biosensing and diagnostic applications, their extensive characterization for in vitro and in vivo applications, and toxicity analysis. All these developments have led to tremendous technology push and successful demonstrations of several promising NBBD. However, there has been a significant lag in their commercialization, especially due to the lack of international regulatory guidelines for evaluating the safety of NMs and the growing public concerns about their toxicity. Despite these numerous advances and the recent regulatory approval of several NMs, it still remains to be seen if NBBD are superior to conventional ones (not based on NMs), reliable, reproducible, cost effective, and robust enough to meet the requirements of industries and healthcare. This manuscript provides a critical review of NBBD, the technology push, and the industrial/healthcare requirements.

Keywords

Nanotechnology Nanomaterials Biosensors Diagnostics Technology push Industrial/healthcare requirements 

References

  1. 1.
    Leary, J. F. (2010). Nanotechnology: what is it and why is small so big? Canadian Journal of Ophthalmology, 45, 449–456.CrossRefGoogle Scholar
  2. 2.
    Weiss, P. S. (2010). Nanoscience and nanotechnology: present and future. ACS Nano, 4, 1771–1772.CrossRefGoogle Scholar
  3. 3.
    Jiarong, C., Yuqing, M., Nongyue, H., Xiaohua, W., Sijiao, L. (2004). Nanotechnology and biosensors. Biotechnology Advances, 22, 505–518.CrossRefGoogle Scholar
  4. 4.
    Vaddiraju, S., Tomazos, I., Burgess, D. J., Jain, F. C., Papadimitrakopoulos, F. (2010). Emerging synergy between nanotechnology and implantable biosensors: a review. Biosensors and Bioelectronics, 25, 1553–1565.CrossRefGoogle Scholar
  5. 5.
    Cheng, M. M. C., Cuda, G., Bunimovich, Y. L., et al. (2006). Nanotechnologies for biomolecular detection and medical diagnostics. Current Opinion in Chemical Biology, 10, 11–19.CrossRefGoogle Scholar
  6. 6.
    Hauck, T. S., Giri, S., Gao, Y., Chan, W. C. W. (2010). Nanotechnology diagnostics for infectious diseases prevalent in developing countries. Advance Drug Delaware Review, 62, 438–448.CrossRefGoogle Scholar
  7. 7.
    Sosnik, A., & Amiji, M. (2010). Nanotechnology solutions for infectious diseases in developing nations. Advance Drug Delaware Review, 62, 375–377.CrossRefGoogle Scholar
  8. 8.
    Kim, P. S., Djazayeri, S., Zeineldi, R. (2011). Novel nanotechnology approaches to diagnosis and therapy of ovarian cancer. Gynecologic Oncology, 120, 393–403.CrossRefGoogle Scholar
  9. 9.
    Stylios, G. K., Giannoudis, P. V., Wan, T. (2005). Applications of nanotechnologies in medical diagnostics. Injury, International Journal of the Care of the Injured, 36S, S6–S13.Google Scholar
  10. 10.
    Fournier-Wirth, C., Coste, J. (2010). Nanotechnologies for pathogen detection: future alternatives? Biologicals, 38, 9–13.CrossRefGoogle Scholar
  11. 11.
    Ansari, A. A., Alhoshan, M., Alsalhi, M. S., Aldwayyan, A. S. (2010). Prospects of nanotechnology in clinical immunodiagnostics. Sensors, 10, 6535–6581.CrossRefGoogle Scholar
  12. 12.
    Jain, K. K. (2005). Nanotechnology in clinical laboratory diagnostics. Clinica Chimica Acta, 358, 37–54.CrossRefGoogle Scholar
  13. 13.
    Thomas, C. R., George, S., Horst, A. M., et al. (2011). Nanomaterials in the environment: from materials to high-throughput screening to organisms. ACS Nano, 5, 13–20.CrossRefGoogle Scholar
  14. 14.
    Shi, J., Votruba, A. R., Farokhzad, O. C., Langer, R. (2010). Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Letters, 10, 3223–3230.CrossRefGoogle Scholar
  15. 15.
    Vashist, S. K., Zheng, D., Pastorin, G., Al-Rubeaan, K., Luong, J. H. T., Sheu, F. S. (2011). Delivery of drugs and biomolecules using carbon nanotubes. Carbon, 49, 4077–4097.CrossRefGoogle Scholar
  16. 16.
    Li, J., Yap, S. Q., Yoong, S. L., et al. (2012). Carbon nanotube bottles for incorporation, release and enhanced cytotoxic effect of cisplatin. Carbon, 50, 1625–1634.CrossRefGoogle Scholar
  17. 17.
    Moghimi, S. M., Peer, D., Langer, R. (2011). Reshaping the future of nanopharmaceuticals: ad ludicum. ACS Nano, 5, 8454–8458.CrossRefGoogle Scholar
  18. 18.
    Kim, K. Y. (2007). Nanotechnology platforms and physiological challenges for cancer therapeutics. Nanomedicine: Nanotechnology, Biology, and Medicine, 3, 103–110.CrossRefGoogle Scholar
  19. 19.
    Misra, R., Acharya, S., Sahoo, S. K. (2010). Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discovery Today, 15, 842–850.CrossRefGoogle Scholar
  20. 20.
    Kawasaki, E. S., & Player, A. (2005). Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 1, 101–109.CrossRefGoogle Scholar
  21. 21.
    Farokhzad, O. C., & Langer, R. (2006). Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Del Rev, 58, 1456–1459.CrossRefGoogle Scholar
  22. 22.
    Phan, J. H., Moffitt, R. A., Stokes, T. H., Liu, J., Young, A. N., Nie, S., et al. (2009). Convergence of biomarkers, bioinformatics and nanotechnology for individualized cancer treatment. Trends in Biotechnology, 27, 350–358.CrossRefGoogle Scholar
  23. 23.
    Yan, Y., Such, G. K., Johnston, A. P. R., Best, J. P., Caruso, F. (2012). Engineering particles for therapeutic delivery: prospects and challenges. ACS Nano. doi:10.1021/nn3016162.
  24. 24.
    Fortina, P., Kricka, L. J., Bonnell, D., Kulkarni, A., Wang, J., Miyahara, Y., et al. (2010). Nanotechnology: improving clinical testing? Clinical Chemistry, 56, 1384–1389.CrossRefGoogle Scholar
  25. 25.
    Zarbin, M. A., Montemagno, C., Leary, J. F., Ritch, R. (2010). Nanotechnology in ophthalmology. Canadian Journal of Ophthalmology, 45, 457–476.CrossRefGoogle Scholar
  26. 26.
    Re, F., Gregori, M., Masserini, M. (2012). Nanotechnology for neurodegenerative disorders. Maturitas. doi:10.1016/j.maturitas.2011.12.015.
  27. 27.
    Sahoo, S. K., Parveen, S., Panda, J. J. (2007). The present and future of nanotechnology in human health care. Nanomedicine: Nanotechnology, Biology, and Medicine, 3, 20–31.CrossRefGoogle Scholar
  28. 28.
    Brambilla, D., Droumaguet, B. L., Nicolas, J., et al. (2011). Nanotechnologies for Alzheimer’s disease: diagnosis, therapy, and safety issues. Nanomedicine: Nanotechnology, Biology, and Medicine, 7, 521–540.CrossRefGoogle Scholar
  29. 29.
    Farrell, D., Alper, J., Ptak, K., Panaro, N. J., Grodzinski, P., Barker, A. D. (2010). Recent advances from the National Cancer Institute Alliance for Nanotechnology in Cancer. ACS Nano, 4, 589–594.CrossRefGoogle Scholar
  30. 30.
    Retél, V. P., Hummel, M. J. M., Harten, W. H. V. (2009). Review on early technology assessments of nanotechnologies in oncology. Molecular Oncology, 3, 394–401.CrossRefGoogle Scholar
  31. 31.
    Boisseau, P., & Loubaton, B. (2011). Nanomedicine, nanotechnology in medicine. Comptes Rendus Physique, 12, 620–636.CrossRefGoogle Scholar
  32. 32.
    Sawhney, A. P. S., Condon, B., Singh, K. V., Pang, S. S., Li, G., Hui, D. (2008). Modern applications of nanotechnology in textiles. Textile Research Journal, 78, 731–739.CrossRefGoogle Scholar
  33. 33.
    Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363, 1–24.CrossRefGoogle Scholar
  34. 34.
    Sakamoto, J. H., Ven, A. L. V. D., Godin, B., et al. (2010). Enabling individualized therapy through nanotechnology. Pharmacological Research, 62, 57–89.CrossRefGoogle Scholar
  35. 35.
    Bonnell, D. (2010). The next decade of nanoscience and nanotechnology. ACS Nano, 4, 6293–6294.CrossRefGoogle Scholar
  36. 36.
  37. 37.
    Gabellieri, C. (2011). Nanomedicine in the European Commission policy for nanotechnology. Nanomedicine: Nanotechnology, Biology, and Medicine, 7, 519–520.CrossRefGoogle Scholar
  38. 38.
    Horton, M. A., & Khan, A. (2006). Medical nanotechnology in the UK: a perspective from the London Centre for Nanotechnology. Nanomedicine: Nanotechnology, Biology, and Medicine, 2, 42–48.CrossRefGoogle Scholar
  39. 39.
    Pandza, K., Wilkins, T. A., Alfoldi, E. A. (2011). Collaborative diversity in a nanotechnology innovation system: evidence from the EU framework programme. Technovation, 31, 476–489.CrossRefGoogle Scholar
  40. 40.
    Allarakhia, M., & Walsh, S. (2012). Analyzing and organizing nanotechnology development: application of the institutional analysis development framework to nanotechnology consortia. Technovation, 32, 216–226.CrossRefGoogle Scholar
  41. 41.
  42. 42.
    Service RF. (2001). Breakthrough of the year: molecules get wired. Science, 294, 2442–2443.CrossRefGoogle Scholar
  43. 43.
    Service RF. (2002). Bell Labs fires star physicist found guilty of forging data. Science, 298, 30–31.CrossRefGoogle Scholar
  44. 44.
  45. 45.
    Hersam, M. (2011). Nanoscience and nanotechnology in the posthype era. ACS Nano, 5, 1–2.CrossRefGoogle Scholar
  46. 46.
    Gubala, V., Harris, L. F., Ricco, A. J., Tan, M. X., Williams, D. E. (2012). Point of care diagnostics: status and future. Analytical Chemistry, 84, 487–515.CrossRefGoogle Scholar
  47. 47.
    Rasooly, A. (2006). Moving biosensors to point-of-care cancer diagnostics. Biosensors and Bioelectronics, 21, 1847–1850.CrossRefGoogle Scholar
  48. 48.
    Frasco, M. F., & Chaniotakis, N. (2010). Bioconjugated quantum dots as fluorescent probes for bioanalytical applications. Analytical and Bioanalytical Chemistry, 396, 229–240.CrossRefGoogle Scholar
  49. 49.
    Bruls, D. M., Evers, T. H., Kahlman, J. A. H., et al. (2009). Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles. Lab on a Chip, 9, 3504–3510.CrossRefGoogle Scholar
  50. 50.
    Cheng, Y., Zhao, L., Li, Y., Xu, T. (2011). Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chemical Society Reviews, 40, 2673–2703.CrossRefGoogle Scholar
  51. 51.
    Ghazani, A. A., Lee, J. A., Klostranec, J., et al. (2006). High throughput quantification of protein expression of cancer antigens in tissue microarray using quantum dot nanocrystals. Nano Letters, 6, 2881–2886.CrossRefGoogle Scholar
  52. 52.
    Kairemo, K., Erba, P., Bergström, K., Pauwels, E. K. J. (2008). Nanoparticles in cancer. Current Radiopharmaceuticals, 1, 30–36.Google Scholar
  53. 53.
    Bianco A., Kostarelos K., Partidos C.D., Prato M. (2005). Biomedical applications of functionalised carbon nanotubes. Chemical Communication, 571–577Google Scholar
  54. 54.
    Vashist, S. K., Zheng, D., Al-Rubeaan, K., Luong, J. H. T., Sheu, F. S. (2011). Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnology Advances, 29, 169–188.CrossRefGoogle Scholar
  55. 55.
    Dresselhaus, M. S., & Araujo, P. T. (2010). The 2010 Nobel Prize in physics for graphene: some perspectives. ACS Nano, 4, 6297–6302.CrossRefGoogle Scholar
  56. 56.
    Zheng, D., Vashist, S.K., Luong, J.H.T., Al-Rubeaan, K., Sheu, F.S. (2012). Amperometric glucose biosensing using 3-aminopropyltriethoxysilane functionalized graphene. Talanta, doi:10.1016/j.talanta.2012.05.014.
  57. 57.
    Azzazy, H. M. E., Mansour, M. M. H., Kazmierczak, S. C. (2007). From diagnostics to therapy: prospects of quantum dots. Clinical Biochemistry, 40, 917–927.CrossRefGoogle Scholar
  58. 58.
    Parveen, S., Misra, R., Sahoo, S. K. (2012). Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine: Nanotechnology, Biology, and Medicine, 8, 147–166.CrossRefGoogle Scholar
  59. 59.
    Fan, Z., Shelton, M., Singh, A. K., Senapati, D., Khan, S. A., Ray, P. C. (2012). Multifunctional plasmonic shell–magnetic core nanoparticles for targeted diagnostic, isolation, and photothermal destruction of tumor cells. ACS Nano, 6, 1065–1073.CrossRefGoogle Scholar
  60. 60.
    Boisselier, E., & Astruc, D. (2009). Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chemical Society Reviews, 38, 1759–1782.CrossRefGoogle Scholar
  61. 61.
    Dreaden, E. C., Alkilany, A. M., Huang, X., Murphy, C. J., El-Sayed, M. A. (2012). The golden age: gold nanoparticles for biomedicine. Chemical Society Reviews, 41, 2740–2779.CrossRefGoogle Scholar
  62. 62.
    Dykman, L., & Khlebtsov, N. (2012). Gold nanoparticles in biomedical applications: recent advances and perspectives. Chemical Society Reviews, 41, 2256–2282.CrossRefGoogle Scholar
  63. 63.
    Misiakos, K., Kakabakos, S. E., Petrou, P. S., Ruf, H. H. (2004). A monolithic silicon optoelectronic transducer as a real-time affinity biosensor. Analytical Chemistry, 76, 1366–1373.CrossRefGoogle Scholar
  64. 64.
    Weizmann, Y., Patolsky, F., Willner, I. (2001). Amplified detection of DNA and analysis of single-base mismatches by the catalyzed deposition of gold on Au-nanoparticles. Analyst, 126, 1502–1504.CrossRefGoogle Scholar
  65. 65.
    Rosi, N. L., & Mirkin, C. A. (2005). Nanostructures in biodiagnostics. Chemical Reviews, 105, 1547–1562.CrossRefGoogle Scholar
  66. 66.
    Lee, K., Drachev, V. P., Irudayaraj, J. (2011). DNA–gold nanoparticle reversible networks grown on cell surface marker sites: application in diagnostics. ACS Nano, 5, 2109–2117.CrossRefGoogle Scholar
  67. 67.
    Koh, I., & Josephson, L. (2009). Magnetic nanoparticle sensors. Sensors, 9, 8130–8145.CrossRefGoogle Scholar
  68. 68.
    Haun, J. B., Yoon, T.-J., Lee, H., Weissleder, R. (2010). Magnetic nanoparticle biosensors. WIREs Nanomedicine Nanobiotechnology, 2, 291–304.CrossRefGoogle Scholar
  69. 69.
    Dittmer, W. U., de Kievit, P., Prins, M. W. J., Vissers, J. L. M., Mersch, M. E. C., Martens, M. F. W. C. (2008). Sensitive and rapid immunoassay for parathyroid hormone using magnetic particle labels and magnetic actuation. Journal of Immunological Methods, 338, 40–46.CrossRefGoogle Scholar
  70. 70.
    Sashiwa, H., & Aiba, S.-I. (2004). Chemically modified chitin and chitosan as biomaterials. Progress in Polymer Science, 29, 887–908.CrossRefGoogle Scholar
  71. 71.
    Koev, S. T., Dykstra, P. H., Luo, X., Rubloff, G. W., Bentley, W. E., Payne, G. F., et al. (2010). Chitosan: an integrative biomaterial for lab-on-a-chip devices. Lab on a Chip, 10, 3026–3042.CrossRefGoogle Scholar
  72. 72.
    Kean, T., & Thanou, M. (2010). Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Del Rev, 62, 3–11.CrossRefGoogle Scholar
  73. 73.
    Satija, J., Sai, V. V. R., Mukherji, S. (2011). Dendrimers in biosensors: concepts and applications. Journal of Materials Chemistry, 21, 14367–14386.CrossRefGoogle Scholar
  74. 74.
    Shen, M., & Shi, X. (2010). Dendrimer-based organic/inorganic hybrid nanoparticles in biomedical applications. Nanoscale, 2, 1596–1610.CrossRefGoogle Scholar
  75. 75.
    Dennis, M., Vriezema, D. M., Aragonès, M. C., Elemans, J. A. A. W., Cornelissen, J. J. L. M., Rowan, A. E., et al. (2005). Self-assembled nanoreactors. Chemical Reviews, 105, 1445–1489.CrossRefGoogle Scholar
  76. 76.
    Malam, Y., Loizidou, M., Seifalian, A. M. (2009). Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends in Pharmacological Sciences, 30, 592–599.CrossRefGoogle Scholar
  77. 77.
    Christensen, S. M., & Stamou, D. (2007). Surface-based lipid vesicle reactor systems: fabrication and applications. Soft Matter, 3, 828–836.CrossRefGoogle Scholar
  78. 78.
    Jelinek, R., & Kolusheva, S. (2007). Biomolecular sensing with colorimetric vesicles. Topics in Current Chemistry, 277, 155–180.CrossRefGoogle Scholar
  79. 79.
    Leung, A. C. W., Hrapovic, S., Lam, E., Liu, Y., Male, K. B., Mahmoud, K. A., et al. (2011). Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small, 7, 302–305.CrossRefGoogle Scholar
  80. 80.
    Lam, E., Male, K. B., Chong, J. H., Leung, A. C. W., Luong, J. H. T. (2012). Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends in Biotechnology, 30, 283–290.CrossRefGoogle Scholar
  81. 81.
    Shukla, G. C., Haque, F., Tor, Y., et al. (2011). A boost for the emerging field of RNA nanotechnology. ACS Nano, 5, 3405–3418.CrossRefGoogle Scholar
  82. 82.
    Modi, S., Bhatia, D., Simmel, F. C., Krishnan, Y. (2010). Structural DNA nanotechnology: from bases to bricks, from structure to function. Journal of Physical Chemistry Letters, 1, 1994–2005.CrossRefGoogle Scholar
  83. 83.
    Campolongo, M. J., Tan, S. J., Xu, J., Luo, D. (2010). DNA nanomedicine: engineering DNA as a polymer for therapeutic and diagnostic applications. Adv Drug Del Rev, 62, 606–616.CrossRefGoogle Scholar
  84. 84.
    Xiao, Y., & Li, C. M. (2008). Nanocomposites: from fabrications to electrochemical bioapplications. Electroanalytical, 20, 648–662.CrossRefGoogle Scholar
  85. 85.
    Hussain, F., Hojjati, M., Okamoto, M., Gorga, R. E. (2006). Polymer–matrix nanocomposites, processing, manufacturing, and application: an overview. Journal of Composite Materials, 40, 1511–1575.CrossRefGoogle Scholar
  86. 86.
    Rajesh, A. T., & Kumar, D. (2009). Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sensors and Actuators B: Chemistry, 136, 275–286.CrossRefGoogle Scholar
  87. 87.
    Dixit, C. K., & Kaushik, A. (2012). Nano-structured arrays for multiplex analyses and lab-on-a-chip applications. Biochemical and Biophysical Research Communications, 419, 316–320.CrossRefGoogle Scholar
  88. 88.
    Dixit, C.K., Kumar, A., Kaushik, A. (2012). Nanosphere lithography-based platform for developing rapid and high sensitivity microarray systems. Biochemistry and Biophysics Research Communications. doi:10.1016/j.bbrc.2012.05.144.
  89. 89.
    Binnig, G., Quate, C. F., Gerber, C. (1986). Atomic force microscope. Physical Review Letters, 56, 930–933.CrossRefGoogle Scholar
  90. 90.
  91. 91.
    Mitsakakis, K., Sekula-Neuner, S., Lenhert, S., Fuchs, H., Gizeli, E. (2012). Convergence of Dip-Pen Nanolithography and acoustic biosensors towards a rapid-analysis multi-sample microsystem. Analyst, 137, 3076–3082.CrossRefGoogle Scholar
  92. 92.
    Mitsakakis, K., Lousinian, S., Logothetidis, S. (2007). Early stages of human plasma proteins adsorption probed by atomic force microscope. Biomolecular Engineering, 24, 119–124.CrossRefGoogle Scholar
  93. 93.
    Florence, A. T. (2004). The dangers of generalization in nanotechnology. Drug Discovery Today, 9, 60–61.CrossRefGoogle Scholar
  94. 94.
    Türk, V., Kaiser, C., Schaller, S. (2008). Invisible but tangible? Societal opportunities and risks of nanotechnologies. Journal of Cleaner Production, 16, 1006–1009.CrossRefGoogle Scholar
  95. 95.
    Wiek, A., Lang, D. J., Siegrist, M. (2008). Qualitative system analysis as a means for sustainable governance of emerging technologies: the case of nanotechnology. Journal of Cleaner Production, 16, 988–999.CrossRefGoogle Scholar
  96. 96.
    Novak, P. J., Arnold, W. A., Blazer, V. S., et al. (2011). On the need for a national (U.S.) research program to elucidate the potential risks to human health and the environment posed by contaminants of emerging concern. Environmental Science and Technology, 45, 3829–3830.Google Scholar
  97. 97.
    Malloy, T. F. (2011). Nanotechnology regulation: a study in claims making. ACS Nano, 5, 5–12.MathSciNetCrossRefGoogle Scholar
  98. 98.
    Sharifi, S., Behzadi, S., Laurent, S., Forrest, M. L., Stroeve, P., Mahmoudi, M. (2012). Toxicity of nanomaterials. Chemical Society Reviews, 41, 2323–2343.CrossRefGoogle Scholar
  99. 99.
    Oberdörster, G., Oberdörster, E., Oberdörster, J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113, 823–839.CrossRefGoogle Scholar
  100. 100.
    Oberdörster, G. (2005). Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. Journal of Internal Medicine, 267, 89–105.CrossRefGoogle Scholar
  101. 101.
    Holl, M. M. B. (2009). Nanotoxicology: a personal perspective. WIREs Nanomedicine and Nanobiotechology, 1, 353–359.CrossRefGoogle Scholar
  102. 102.
    Hutchison, J. E. (2008). Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano, 2, 395–402.CrossRefGoogle Scholar
  103. 103.
    Leroueil, P. R., Hong, S., Mecke, A., Baker, J. R., Orr, B. G., Holl, M. M. B. (2007). Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face? Accounts of Chemical Research, 40, 335–342.CrossRefGoogle Scholar
  104. 104.
    Marquis, B. J., Love, S. A., Braun, K. L., Haynes, C. L. (2009). Analytical methods to assess nanoparticle toxicity. Analyst, 134, 425–439.CrossRefGoogle Scholar
  105. 105.
    Cui, H. F., Vashist, S. K., Al-Rubeaan, K., Luong, J. H. T., Sheu, F. S. (2010). Interfacing carbon nanotubes with living mammalian cells and cytotoxicity issues. Chemical Research in Toxicology, 23, 1131–1147.CrossRefGoogle Scholar
  106. 106.
    Oberdörster, G., Maynard, A., Donaldson, K., ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group, et al. (2005). Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle and Fibre Toxicology, 2, 8. doi:10.1186/1743-8977-2-8.CrossRefGoogle Scholar
  107. 107.
    Cash, K. J., & Clark, H. A. (2010). Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends in Molecular Medicine, 16, 584–593.CrossRefGoogle Scholar
  108. 108.
    Zheng, D., Vashist, S. K., Al-Rubeaan, K., Luong, J. H. T., Sheu, F. S. (2012). Rapid and simple preparation of a reagentless glucose electrochemical biosensor. Analyst. doi:10.1039/C2AN35128E.
  109. 109.
    Dixit, C. K., Vashist, S. K., O’Neill, F. T., O’Reilly, B., MacCraith, B. D., O’Kennedy, R. (2010). Development of a high sensitivity rapid sandwich ELISA procedure and its comparison with the conventional approach. Analytical Chemistry, 82, 7049–7052.CrossRefGoogle Scholar
  110. 110.
    Dixit, C. K., Vashist, S. K., MacCraith, B. D., O’Kennedy, R. (2011). Multi-substrate compatible ELISA procedures for rapid and high sensitivity immunoassays. Nature Protocols, 6, 439–445.CrossRefGoogle Scholar
  111. 111.
    Kostarelos, K., Bianco, A., Prato, M. (2008). Hype around nanotubes creates unrealistic hopes. Nature, 453, 280.CrossRefGoogle Scholar
  112. 112.
    Kotov, N. A. (2009). Politics and nanotechnology in the health care industry. ACS Nano, 3, 2855–2856.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Sandeep Kumar Vashist
    • 1
  • A. G. Venkatesh
    • 1
  • Konstantinos Mitsakakis
    • 1
    • 2
  • Gregor Czilwik
    • 1
  • Günter Roth
    • 2
  • Felix von Stetten
    • 1
    • 2
  • Roland Zengerle
    • 1
    • 2
    • 3
  1. 1.HSG-IMIT—Institut für Mikro- und InformationstechnikFreiburgGermany
  2. 2.Laboratory for MEMS Applications, IMTEK—Department of Microsystems EngineeringUniversity of FreiburgFreiburgGermany
  3. 3.BIOSS—Centre for Biological Signalling StudiesUniversity of FreiburgFreiburgGermany

Personalised recommendations