, Volume 2, Issue 3, pp 135–143 | Cite as

Transmission Near-Field Scanning Optical Microscopy Investigation on Cellular Uptake Behavior of Iron Oxide Nanoparticles

  • Yu Zhang
  • Jennifer Reiber Kyle
  • Miro Penchev
  • Vahid Yazdanpanah
  • Jinjiang Yu
  • Yi Li
  • Mo Yang
  • Gurer Budak
  • Ekmel Ozbay
  • Mihrimah Ozkan
  • Cengiz S. OzkanEmail author


Cellular uptake behavior of iron oxide nanoparticles is investigated using a transmission near-field scanning optical microscopy (NSOM) without the need of fluorescent labeling. By using the transmission NSOM system, we could simultaneously explore the near-field optical analysis of the cell interior and record the topographic information of the cell surface. The cell endocytosis of iron oxide nanoparticles by normal breast MCF10A cells is first studied by this transmission NSOM system, and this dual functional nanoscale-resolution microscopy shows the capability of mapping the spatial localization of nanoparticles in/outside cell surface without the need of fluorescence labeling. Nanoscale optical signature patterns for iron oxide nanoparticle-loaded vesicles inside the cells were observed and analyzed.


AFM NSOM Iron oxide Nanoparticle Endocytosis MCF10A 



We gratefully acknowledge the Center of Excellence of Nanotechnology for Treatment, Understanding, and Monitoring of Cancer (NANOTUMOR) for providing financial support for this project. Mr. Stephen McDaniel in the Central Facility for Advanced Microscopy and Microanalysis (CFAMM) at the University of California is gratefully acknowledged for assistance in preparing the microtome cell slides for TEM.


  1. 1.
    Pawley, J. B. (Ed.). (1995). Handbook of biological confocal microscopy. New York: Plenum.Google Scholar
  2. 2.
    Zenobi, R. (2008). Analytical and Bioanalytical Chemistry, 390, 215.CrossRefGoogle Scholar
  3. 3.
    Betzig, E., & Trautman, J. K. (1992). Science, 257, 189.CrossRefGoogle Scholar
  4. 4.
    de Lange, F., Cambi, A., Huijbens, R., de Bakker, B., Rensen, W., Garcia-Parajo, M., van Hulst, N., Figdor, C. G. (2001). Journal of Cell Science, 114, 4153.Google Scholar
  5. 5.
    Enderle, T., Ha, T., Chemla, D. S., Weiss, S. (1998). Ultramicroscopy, 71, 303.CrossRefGoogle Scholar
  6. 6.
    Hwang, J., Gheber, L. A., Margolis, L., Edidin, M. (1998). Biophysical Journal, 74, 2184.CrossRefGoogle Scholar
  7. 7.
    Ianoul, A., Street, M., Grant, D., Pezacki, J., Taylor, R. S., Johnston, L. J. (2004). Biophysical Journal, 87, 3525.CrossRefGoogle Scholar
  8. 8.
    Koopman, M., Cambi, A., de Bakker, B. I., Joosten, B., Figdor, C. G., van Hulst, N. F., Garcia-Parajo, M. F. (2004). FEBS Letters, 573, 6.CrossRefGoogle Scholar
  9. 9.
    Thurn, K. T., Paunesku, T., Wu, A., Brown, E. M., Lai, B., Vogt, S., Maser, J., Aslam, M., Dravid, V., Bergan, R., Woloschak, G. E. (2009). Small, 5, 1318.CrossRefGoogle Scholar
  10. 10.
    Maxwell, D. J., Bonde, J., Hess, D. A., Hohm, S. A., Lahey, R., Zhou, P., Creer, M. H., Piwnica Worms, D., Nolta, J. A. (2008). Stem Cells, 26, 517.CrossRefGoogle Scholar
  11. 11.
    H. Mader, X. H. Li, S. Saleh, M. Link, P. Kele, O. S.Wolfbeis. Fluorescence methods and applications: Spectroscopy, imaging, and probes. Wiley-Blackwell. 218 (2008).Google Scholar
  12. 12.
    Lee, J. H., Schneider, B., Jordan, E. K., Liu, W., Frank, J. A. (2008). Advanced Materials, 20, 2512.CrossRefGoogle Scholar
  13. 13.
    Clark, P. R., Chua-Anusorn, W., St Pierre, T. G. (2003). Magnetic Resonance in Medicine, 49, 572.CrossRefGoogle Scholar
  14. 14.
    Gupta, A. K., & Gupta, M. (2005). Biomaterials, 26, 3995.CrossRefGoogle Scholar
  15. 15.
    Hergt, R., Andra, W., d’Ambly, C. G., Hilger, I., Kaiser, W. A., Richter, U., Schmidt, H. G. (1998). IEEE Transactions in Magnetics, 34, 3745.CrossRefGoogle Scholar
  16. 16.
    Lee, H., Lee, E., Kim, D. K., Jang, N. K., Jeong, Y. Y., Jon, S. (2006). Journal of the American Chemical Society, 128, 7383.CrossRefGoogle Scholar
  17. 17.
    Frankel, D. J., Pfeiffer, J. R., Surviladze, Z., Johnson, A. E., Oliver, J. M., Wilson, B. S., Burns, A. R. (2006). Biophysical Journal, 90, 2404.CrossRefGoogle Scholar
  18. 18.
    Stark, M., Moller, C., Muller, D. J., Guckenberger, R. (2001). Biophysical Journal, 80, 3009.CrossRefGoogle Scholar
  19. 19.
    Chithrani, B. D., Ghazani, A. A., Chan, W. C. W. (2006). Nano Letters, 6, 662.CrossRefGoogle Scholar
  20. 20.
    Wilhelm, C., Gazeau, F., Roger, J., Pons, J. N., Bacri, J. C. (2002). Langmuir, 18, 8148.CrossRefGoogle Scholar
  21. 21.
    G.M. Cooper (Ed.). The cell: A molecular approach. ASM Press, Washington D.C. (2000)Google Scholar
  22. 22.
    Wilhelm, C., Billotey, C., Roger, J., Pons, J. N., Bacri, J. C., Gazeau, F. (2003). Biomaterials, 24, 1001.CrossRefGoogle Scholar
  23. 23.
    Jin, H., Heller, D. A., Sharma, R., Strano, M. S. (2009). ACS Nano, 3, 149.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Yu Zhang
    • 1
    • 2
  • Jennifer Reiber Kyle
    • 3
  • Miro Penchev
    • 3
  • Vahid Yazdanpanah
    • 1
  • Jinjiang Yu
    • 4
  • Yi Li
    • 2
  • Mo Yang
    • 4
  • Gurer Budak
    • 5
  • Ekmel Ozbay
    • 6
  • Mihrimah Ozkan
    • 3
  • Cengiz S. Ozkan
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringUniversity of California RiversideRiversideUSA
  2. 2.Institute of Textiles and Clothing, the Hong Kong Polytechnic UniversityHong KongChina
  3. 3.Department of Electrical EngineeringUniversity of California RiversideRiversideUSA
  4. 4.Department of Health Technology and InformaticsHong Kong Polytechnic UniversityHong KongChina
  5. 5.Nanomedicine Research Center, Gazi UniversityAnkaraTurkey
  6. 6.Nanotechnology Research Center, Department of PhysicsBilkent UniversityAnkaraTurkey

Personalised recommendations