BioNanoScience

, Volume 2, Issue 2, pp 108–112 | Cite as

Second Harmonic Generation to Monitor the Interactions of the Antimicrobial Mycosubtilin with Membrane-Mimicking Interfacial Monolayers

  • Mehmet Nail Nasir
  • Emmanuel Benichou
  • Jean Sébastien Guez
  • Philippe Jacques
  • Pierre-François Brevet
  • Françoise Besson
Article

Abstract

Mycosubtilin is a strong antimicrobial agent belonging to the iturinic lipopeptide family which contains a single tyrosine residue. Its cell target has been shown to be the cytoplasmic membrane. This tyrosine residue has been previously shown to be essential for the biological activity of mycosubtilin. Since we have previously demonstrated that tyrosine, an aromatic amino acid, can be used as an endogenous probe for the frequency doubling process, the presence of a tyrosine residue in mycosubtilin allowed us to investigate the interactions of mycosubtilin with biomimetic lipid monolayers at the air–water interface by second harmonic generation (SHG). Mycosubtilin was added underneath dipalmitoylphosphatidylcholine or cholesterol monolayers at the air–water interface and significant increases in the surface pressure were observed in both cases. This observation demonstrates that mycosubtilin interacts with these biomimetic membranes. A light polarization resolved analysis of the SHG signals recovered for these two systems was then performed and confirmed that those interactions between the tyrosine residue in mycosubtilin and the membranes could be monitored by SHG. Furthermore, the differences exhibited by the nonlinear optical measurements for different membranes showed that these interactions depend on the nature of the biomimetic membrane present at the air–water interface.

Keywords

Mycosubtilin Biomimetic membranes Second harmonic generation Iturin Antimicrobial peptide 

References

  1. 1.
    Shen, Y. R. (1986). Surface second harmonic generation: a new technique for surface studies. Annual Review of Material Science, 16, 69–86.CrossRefGoogle Scholar
  2. 2.
    Eisenthal, K. B. (1996). Liquid interfaces probed by second-harmonic and sum-frequency spectroscopy. Chemical Reviews, 96(4), 1343–1360.CrossRefGoogle Scholar
  3. 3.
    Duboisset, J., Matar, G., Russier-Antoine, I., Benichou, E., Bachelier, G., Jonin, C. H., Ficheux, D., Besson, F., Brevet, P. F. (2010). First hyperpolarizability of the natural aromatic amino acids tryptophan, tyrosine and phenylalanine and the tripeptide lysine–tryptophan–lysine determined by hyper Rayleigh scattering. The Journal of Physical Chemistry. B, 114(43), 13861–13865.CrossRefGoogle Scholar
  4. 4.
    Corn, R. M., & Higgins, D. A. (1994). Optical second harmonic generation as a probe of surface-chemistry. Chemical Reviews, 94(5), 107–125.CrossRefGoogle Scholar
  5. 5.
    Shen, Y. R. (1984). The principles of nonlinear optics. New York: Wiley.Google Scholar
  6. 6.
    Salafsky, J. S., & Cohen, B. (2008). A second-harmonic-active unnatural amino acid as a structural probe of biomolecules on surfaces. The Journal of Physical Chemistry. B, 112(47), 15103–15107.CrossRefGoogle Scholar
  7. 7.
    Mitchell, S. A. (2006). Origin of second harmonic generation optical activity of a tryptophan derivative at the air/water interface. Journal of Chemical Physics, 125(4), 44716.CrossRefGoogle Scholar
  8. 8.
    Matar, G., Duboisset, J., Benichou, E., Bachelier, G., Russier-Antoine, I., Jonin, C., Ficheux, D., Brevet, P. F., Besson, F. (2010). Second harmonic generation, a new approach for analyzing the interfacial properties of a tryptophan-rich peptide. Chemical Physics Letters, 500(1–3), 161–166.CrossRefGoogle Scholar
  9. 9.
    Peypoux, F., Pommier, M. T., Marion, D., Ptak, M., Das, B. C., Michel, G. (1986). Revised structure of mycosubtilin, a peptidolipid antibiotic from Bacillus subtilis. Journal of Antibiotics, 39(5), 636–641.CrossRefGoogle Scholar
  10. 10.
    Leclere, V., Bechet, M., Adam, A., Guez, J. S., Wathelet, M., Ongena, M., Thonart, P., Gancel, F., Chollet-Imbert, M., Jacques, P. (2005). Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Applied and Environmental Microbiology, 71(8), 4577–4584.CrossRefGoogle Scholar
  11. 11.
    Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 16(3), 115–125.CrossRefGoogle Scholar
  12. 12.
    Besson, F., & Michel, G. (1989). Action of mycosubtilin, an antifungal antibiotic of Bacillus subtilis, on the cell membrane of Saccharomyces cerevisiae. Microbios, 59(239), 113–121.Google Scholar
  13. 13.
    Maget-Dana, R., & Ptak, M. (1990). Iturin lipopeptides: interactions of mycosubtilin with lipids in planar membranes and mixed monolayers. Biochimica et Biophysica Acta, 1023(1), 34–40.CrossRefGoogle Scholar
  14. 14.
    Nasir, M. N., & Besson, F. (2011). Specific interactions of mycosubtilin with cholesterol-containing artificial membranes. Langmuir, 27(17), 10785–10792.CrossRefGoogle Scholar
  15. 15.
    Nasir, M. N., Thawani, A., Kouzayha, A., Besson, F. (2010). Interactions of the natural antimicrobial mycosubtilin with phospholipid membrane models. Colloids Surface B, 78(1), 17–23.CrossRefGoogle Scholar
  16. 16.
    Besson, F., Peypoux, F., Michel, G., Delcambe, L. (1978). Identification of antibiotics of iturin group in various strains of Bacillus subtilis. Journal of Antibiotics, 31(4), 284–288.CrossRefGoogle Scholar
  17. 17.
    Martin-Gassin, G., Benichou, E., Bachelier, G., Russier-Antoine, I., Jonin, C. H., Brevet, P. F. (2008). Compression induced chirality in dense molecular films at the air–water interface probed by second harmonic generation. Journal of Physical Chemistry C, 112(10), 12958–12965.CrossRefGoogle Scholar
  18. 18.
    Rinuy, J., Brevet, P. F., Girault, H. H. (1999). Second harmonic generation of glucose oxidase at the air/water interface. Biophysical Journal, 77(6), 3350–3355.CrossRefGoogle Scholar
  19. 19.
    Benichou, E., Martin-Gassin, G., Derouet, A., Russier-Antoine, I., Bachelier, G., Jonin, C., Lascoux, N., Liu, M., Brevet, P. F. (2011). Chirality in molecular films at the air–water interface. SPIE Proceedings, 7935, 79350V–7935.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mehmet Nail Nasir
    • 1
  • Emmanuel Benichou
    • 2
  • Jean Sébastien Guez
    • 3
  • Philippe Jacques
    • 3
  • Pierre-François Brevet
    • 2
  • Françoise Besson
    • 1
  1. 1.Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246Université Lyon 1VilleurbanneFrance
  2. 2.Laboratoire de Spectrométrie Ionique et Moléculaire, UMR CNRS 5579Université Lyon 1VilleurbanneFrance
  3. 3.Laboratoire de Procédés Biologiques, Génie Enzymatique et Microbien (ProBioGEM, UPRES EA 1026), Polytech’Lille, IUT AUniversité Lille Nord de France, USTLVilleneuve d’Ascq CedexFrance

Personalised recommendations