Advertisement

BioNanoScience

, Volume 2, Issue 2, pp 67–74 | Cite as

Control of Drug Loading and Release Properties of Spider Silk Sub-Microparticles

  • Claudia Blüm
  • Thomas Scheibel
Article

Abstract

The controlled delivery of water-soluble substances is one important issue in pharmaceutical and medical applications. Biocompatible polymers which can easily be processed in an all aqueous process with controllable and adjustable properties have been thoroughly investigated in the past for their use as drug delivery vehicles. Recently, we established sub-microparticles produced from the engineered spider silk protein eADF4(C16) as potential carriers for highly water-soluble drugs. Here, we investigate the influence of crosslinking on the structural integrity of the sub-microparticles and the effect on drug loading and release. To analyze the order-of-addition influences of processing of sub-microparticles on drug loading and release, we tested five different preparation routes. We showed that the preparation route largely influences the loading capacity of the eADF4(C16) sub-microparticles. In the preferred preparation route, rhodamine B and the protein are co-precipitated by salting-out, yielding the highest loading. Further, crosslinking the proteins with APS (ammonium persulfate) and Rubpy (Tris(2,2′- bipyridyl)dichlororuthenium(II)) has an impact on loading as well as on the release behavior of drug molecules as shown exemplarily with rhodamine B.

Keywords

Drug delivery Crosslinking Recombinant spider silk protein Particles 

Notes

Acknowledgments

This work was supported by the Bundesministerium für Bildung und Forschung (BMBF), grant number 13N11340. We gratefully thank Lukas Eisoldt and Andrew Smith for proof reading and Felix Bauer, Lukas Eisoldt, Anja Hagenau, Andrew Smith, Michael Suhre, and Stefanie Wohlrab for critical comments on the manuscript. We would like to thank Nicolas Helfricht for assistance with the zeta potential measurements.

References

  1. 1.
    Langer, R. (1990). New methods of drug delivery. Science, 249(4976), 1527–1533.CrossRefGoogle Scholar
  2. 2.
    Langer, R., & Peppas, N. A. (2003). Advances in biomaterials, drug delivery, and bionanotechnology. AICHE Journal, 49(12), 2990–3006.CrossRefGoogle Scholar
  3. 3.
    Choy, Y. B., Cheng, F., Choi, H., Kim, K. K. (2008). Monodisperse gelatin microspheres as a drug delivery vehicle: Release profile and effect of crosslinking density. Macromolecular Bioscience, 8(8), 758–765.CrossRefGoogle Scholar
  4. 4.
    Berkland, C., Kim, K., Pack, D. W. (2001). Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions. Journal of Controlled Release, 73(1), 59–74.CrossRefGoogle Scholar
  5. 5.
    Herrmann, J., & Bodmeier, R. (1995). The effect of particle microstructure on the somatostatin release from poly(lactide) microspheres prepared by a W/O/W solvent evaporation method. Journal of Controlled Release, 36(1–2), 63–71.CrossRefGoogle Scholar
  6. 6.
    Wenk, E., Wandrey, A. J., Merkle, H. P., Meinel, L. (2008). Silk fibroin spheres as a platform for controlled drug delivery. Journal of Controlled Release, 132(1), 26–34.CrossRefGoogle Scholar
  7. 7.
    Hofmann, S., Foo, C. T., Rossetti, F., Textor, M., Vunjak-Novakovic, G., Kaplan, D. L., et al. (2006). Silk fibroin as an organic polymer for controlled drug delivery. Journal of Controlled Release, 111(1–2), 219–227.CrossRefGoogle Scholar
  8. 8.
    Freiberg, S., & Zhu, X. X. (2004). Polymer microspheres for controlled drug release. International Journal of Pharmaceutics, 282(1–2), 1–18.CrossRefGoogle Scholar
  9. 9.
    Lammel, A., Schwab, M., Hofer, M., Winter, G., Scheibel, T. (2011). Recombinant spider silk particles as drug delivery vehicles. Biomaterials, 32(8), 2233–2240.CrossRefGoogle Scholar
  10. 10.
    Lammel, A., Schwab, M., Slotta, U., Winter, G., Scheibel, T. (2008). Processing conditions for the formation of spider silk microspheres. ChemSusChem, 1(5), 413–416.CrossRefGoogle Scholar
  11. 11.
    Spiess, K., Lammel, A., Scheibel, T. (2010). Recombinant spider silk proteins for applications in biomaterials. Macromolecular Bioscience, 10(9), 998–1007.CrossRefGoogle Scholar
  12. 12.
    Liebmann, B., Huemmerich, D., Scheibel, T., Fehr, M. (2008). Formulation of poorly water-soluble substances using self-assembling spider silk protein. Colloid Surface A, 331(1–2), 126–132.CrossRefGoogle Scholar
  13. 13.
    Huemmerich, D., Helsen, C. W., Quedzuweit, S., Oschmann, J., Rudolph, R., Scheibel, T. (2004). Primary structure elements of spider dragline silks and their contribution to protein solubility. Biochemistry-Us, 43(42), 13604–13612.CrossRefGoogle Scholar
  14. 14.
    Slotta, U. K., Rammensee, S., Gorb, S., Scheibel, T. (2008). An engineered spider silk protein forms microspheres. Angewandte Chemie International Edition, 47(24), 4592–4594.CrossRefGoogle Scholar
  15. 15.
    Schacht, K., & Scheibel, T. (2011). Controlled hydrogel formation of a recombinant spider silk protein. Biomacromolecules, 12(7), 2488–2495.CrossRefGoogle Scholar
  16. 16.
    Hardy, J. G., Romer, L. M., Scheibel, T. R. (2008). Polymeric materials based on silk proteins. Polymer, 49(20), 4309–4327.CrossRefGoogle Scholar
  17. 17.
    Rammensee, S., Huemmerich, D., Hermanson, K. D., Scheibel, T., Bausch, A. R. (2006). Rheological characterization of hydrogels formed by recombinantly produced spider silk. Applied Physics A: Materials, 82(2), 261–264.CrossRefGoogle Scholar
  18. 18.
    Slotta, U., Tammer, M., Kremer, F., Koelsch, P., Scheibel, T. (2006). Structural analysis of spider silk films. Supramolecular Chemistry, 18(5), 465–471.CrossRefGoogle Scholar
  19. 19.
    Hermanson, K. D., Harasim, M. B., Scheibel, T., Bausch, A. R. (2007). Permeability of silk microcapsules made by the interfacial adsorption of protein. Physical Chemistry Chemical Physics, 9(48), 6442–6446.CrossRefGoogle Scholar
  20. 20.
    Hermanson, K. D., Huemmerich, D., Scheibel, T., Bausch, A. R. (2007). Engineered microcapsules fabricated from reconstituted spider silk. Advanced Materials, 19(14), 1810–1815.CrossRefGoogle Scholar
  21. 21.
    Spiess, K., Ene, R., Keenan, C. D., Senker, J., Kremer, F., Scheibel, T. (2011). Impact of initial solvent on thermal stability and mechanical properties of recombinant spider silk films. Journal of Materials Chemistry, 21(35), 13594–13604.CrossRefGoogle Scholar
  22. 22.
    Leal-Egana, A., & Scheibel, T. (2010). Silk-based materials for biomedical applications. Biotechnology and Applied Biochemistry, 55, 155–167.CrossRefGoogle Scholar
  23. 23.
    Lammel, A. S., Hu, X., Park, S. H., Kaplan, D. L., Scheibel, T. R. (2010). Controlling silk fibroin particle features for drug delivery. Biomaterials, 31(16), 4583–4591.CrossRefGoogle Scholar
  24. 24.
    Almeria, B., Fahmy, T. M., Gomez, A. (2011). A multiplexed electrospray process for single-step synthesis of stabilized polymer particles for drug delivery. Journal of Controlled Release, 154(2), 203–210.CrossRefGoogle Scholar
  25. 25.
    Park, M. K., Deng, S., Advincula, R. C. (2005). Sustained release control via photo-cross-linking of polyelectrolyte layer-by-layer hollow capsules. Langmuir, 21(12), 5272–5277.CrossRefGoogle Scholar
  26. 26.
    Fancy, D. A., & Kodadek, T. (1999). Chemistry for the analysis of protein-protein interactions: Rapid and efficient cross-linking triggered by long wavelength light. Proceedings of the National Academy of Sciences of the United States of America, 96(11), 6020–6024.CrossRefGoogle Scholar
  27. 27.
    Hunter, R. J. (1981). Zeta potential in colloid science. New York: Academic Press.Google Scholar
  28. 28.
    Mchedlov-Petrossyan, N. O., Vodolazkaya, N. A., Doroshenko, A. O. (2003). Ionic equilibria of fluorophores in organized solutions: The influence of micellar microenvironment on protolytic and photophysical properties of rhodamine B. Journal of Fluorescence, 13(3), 235–248.CrossRefGoogle Scholar
  29. 29.
    Chao, C. C., Ma, Y. S., Stadtman, E. R. (1997). Modification of protein surface hydrophobicity and methionine oxidation by oxidative systems. Proceedings of the National Academy of Sciences of the United States of America, 94(7), 2969–2974.CrossRefGoogle Scholar
  30. 30.
    Beppu, M. M., Vieira, R. S., Aimoli, C. G., Santana, C. C. (2007). Crosslinking of chitosan membranes using glutaraldehyde: Effect on ion permeability and water absorption. Journal of Membrane Science, 301(1–2), 126–130.CrossRefGoogle Scholar
  31. 31.
    Hofer, M., Winter, G., Myschik, J. (2012). Recombinant spider silk particles for controlled delivery of protein drugs. Biomaterials, 33(5), 1554–1562.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Lehrstuhl Biomaterialien, Fakultät für Angewandte NaturwissenschaftenUniversität BayreuthBayreuthGermany

Personalised recommendations