BioNanoScience

, Volume 1, Issue 1–2, pp 38–45 | Cite as

Detection of Aflatoxin B1 with a Label-Free Ellipsometry Immunosensor

  • Alexei V. Nabok
  • Mohd Kamarulzaki Mustafa
  • Anna Tsargorodskaya
  • Nikolaj F. Starodub
Article

Abstract

The method of spectroscopic ellipsometry in total internal reflection mode (TIRE) was utilised for detection of Aflatoxin B1. The method of TIRE with the improved data analysis was capable of detection of aflatoxin molecules in low concentrations (down to 0.04 ng/ml) using a label-free and cost-effective direct immunoassay format. TIRE study of the binding kinetics yielded a large value of the association constant in the range of 106 l mol−1 which is typical for highly specific immune reactions. The comparison of the experimental data for three mycotoxins studied (e.g. aflatoxin B1, T-2 mycotoxin, and zearalenone) confirmed a common mechanism of the sensitivity boost due to the aggregation of hydrophobic molecules of mycotoxins in aqueous solutions.

Keywords

Total internal reflection ellipsometry Mycotoxins Aflatoxin Direct immunoassay Immune reaction kinetic Aggregation of mycotoxins 

References

  1. 1.
    Asoa, T., Buchi, G., Abdel-Kader, M. M., Chang, S. B., Wick, E. L., Wogan, G. N. (1963). Mycotoxins B and D. Journal of the American Chemical Society, 85, 1706–1707.CrossRefGoogle Scholar
  2. 2.
    Hudler, G. (1998). Magical mushrooms, mischievous mold. Princeton, NJ: Princeton University Press.Google Scholar
  3. 3.
    Peraica, M., Radic, B., Lucic, A., Pavlovic, M. (1999). Toxic effects of mycotoxins in humans. Bulletin of the World Health Organization, 77, 754–766.Google Scholar
  4. 4.
    Cho, S. H., Lee, C. H., Jang, M. R., Son, J. W., Lee, S. M., Choi, I. S., et al. (2008). Aflatoxins contamination in spices and processed spice products commercialized in Korea. Food Chemistry, 107, 1283–1288.CrossRefGoogle Scholar
  5. 5.
    Saleemullah, I. A., Khalil, I. A., Shah, H. (2006). Aflatoxin contents of stored and artificially inoculated cereals and nuts. Food Chemistry, 98, 699–703.CrossRefGoogle Scholar
  6. 6.
    Kershaw, S. J. (1982). Occurrence of aflatoxins in oil seeds providing cocoa-butter substitutes. Environmental Microbiology, 43, 1210–1212.Google Scholar
  7. 7.
    Moss, M. (2002). Risk assessment for aflatoxins in foodstuffs. International Biodeterioration and Biodegradation, 50, 137–142.CrossRefGoogle Scholar
  8. 8.
    Wild, C. P., & Gong, Y. Y. (2010). Mycotoxins and human disease: A largely ignored global health issue. Carcinogenesis, 31, 71–82.CrossRefGoogle Scholar
  9. 9.
    Höhler, D. (2000). A brief survey on important mycotoxins and possible detoxification methods. Feed Tech, 4, 44–46.Google Scholar
  10. 10.
    European Commission. (1998). Commission Regulation (EC) No. 1525/98. J Eur Commun, L 201, 43–46.Google Scholar
  11. 11.
    Nabok, A., Tsargorodskaya, A., Hassan, A. K., Starodub, N. F. (2005). Total internal reflection ellipsometry and SPR detection of low molecular weight environmental toxins. Applied Surface Science, 246, 381–386.CrossRefGoogle Scholar
  12. 12.
    Nabok, A., & Tsargorodskaya, A. (2008). The method of total internal reflection ellipsometry for thin film characterisation and sensing. Thin Solid Films, 516, 8993–9000.CrossRefGoogle Scholar
  13. 13.
    Nabok, A., Tsargorodskaya, A., Holloway, A., Starodub, N. F., Gojster, O. (2007). Registration of T-2 Mycotoxin with total internal reflection ellipsometry and QCM impedance methods. Biosensors & Bioelectronics, 22, 885–890.CrossRefGoogle Scholar
  14. 14.
    Nabok, A., Tsargorodskaya, A., Holloway, A., Starodub, N. F., Demchenko, A. (2007). Specific binding of large aggregates of amphiphilic molecules to respective antibodies. Langmuir, 23, 8485–8490.CrossRefGoogle Scholar
  15. 15.
    Westpal, P., & Bornmann, A. (2002). Biomolecular detection by surface plasmon enhanced ellipsometry. Sensors & Actuators B, 84, 278–282.CrossRefGoogle Scholar
  16. 16.
    Arwin, H., Poksinski, M., Johansen, K. (2004). Total internal reflection ellipsometry: Principles and applications. Appl Optics, 43, 3028–3036.CrossRefGoogle Scholar
  17. 17.
    Nabok, A., Tsargorodskaya, A., Mustafa, M.K., Szekacs, I., Starodub, N.F., Szekacs, A. (2011). Detection of low molecular weight toxins using optical phase detection techniques. Sensors Actuators B: Chemical, 211, 232–237.Google Scholar
  18. 18.
    Lvov, Y., & Decher, G. (1994). Assembly of multilayer ordered films by alternating adsorption of oppositely charged macromolecules. Crystallography Reports, 39, 616–696.Google Scholar
  19. 19.
    Lvov Y. & Mohwald, H. (Eds.) (2000). Protein Architecture. Interfacing Molecular Assemblies and Immobilization Biotechnology, Marcel Dekker.Google Scholar
  20. 20.
    Nabok, A. (2005). Organic and inorganic nano-structures. Boston: Artech.Google Scholar
  21. 21.
    Suryajaya, N. A. V., Tsargorodskaya, A., Hassan, A. K., Davis, F. (2008). Electrostatically self-assembled films containing II–VI semiconductor nanoparticles: Optical and electrical properties. Thin Solid Films, 516, 8917–8925.CrossRefGoogle Scholar
  22. 22.
    Woollam JA (2002). Guide to using WVASE32, J. A. WoollamGoogle Scholar
  23. 23.
    Székács, A., Adányi, N., Székács, I., Majer-Baranyi, K., Szendrő, I. (2009). Optical waveguide lightmode spectroscopy immunosensors for environmental monitoring. Appl Optics, 48, B151–B158.CrossRefGoogle Scholar
  24. 24.
    Lishchuk, S., Tsargorodskaya, A., Nabok, A. (2008). The model of alkylphenol micelles bound to respective antibodies on the solid surface. Colloids and Surfaces. A, 324, 117–121.CrossRefGoogle Scholar
  25. 25.
    Liu, X., Wei, J., Song, D., Zhang, Z., Zhang, H., Luo, G. (2003). Determination of affinities and antigenic epitopes of bovine cardiac troponin I (cTnI) with monoclonal antibodies by surface plasmon resonance biosensor. Analytical Biochemistry, 314, 301–309.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Alexei V. Nabok
    • 1
  • Mohd Kamarulzaki Mustafa
    • 1
  • Anna Tsargorodskaya
    • 1
  • Nikolaj F. Starodub
    • 2
  1. 1.Materials and Engineering Research InstituteSheffield Hallam UniversitySheffieldUK
  2. 2.National University of Life and Environmental Sciences of UkraineKievUkraine

Personalised recommendations