Advertisement

Plant capacity level and location as a mechanism for sustainability in biomass supply chain

  • N. Muhammad Aslaam Mohamed Abdul GhaniEmail author
  • Joseph G. Szmerekovsky
  • Chrysafis Vogiatzis
Original Paper
  • 24 Downloads

Abstract

Biomass is an important energy source that has the ability to reduce dependencies on fossil fuels, while providing a greener source of energy and helping achieve sustainability. Among the most commonly used biomass feedstock is corn stover, corn residue remaining in the fields after harvesting. One of the biggest challenges of using corn stover as biomass feedstock is that burning it in field is the fastest and cheapest way for many growers so as to remove it and grow new crops. This leftover corn stover could be, instead, converted to bioethanol. In this work, we propose a decision support system for expanding existing biorefineries or building new ones to help stakeholders design a supply chain network model that converts all of the available corn stover to bioethanol. Two configurations presented in this study which is the existing plant expansion (EP) configuration and the combination of existing and new plant configuration (ENP), by exploring the incentive and greenhouse gas (GHG) emission price value for the bioenergy plant to achieve the goal. The aim of converting all corn stover is successfully achieved along with the other goals of achieving sustainability by reducing the amount of GHG emissions in the supply chain. Our results reveal that we can achieve a minimum amount of GHG emissions, while maximizing profit from the supply chain, when expanding existing plants and building new plants (ENP configuration) leading to a reduction of GHG emissions by 4%.

Keywords

Biomass Sustainable supply chain management Incentives Optimization Facility location 

Notes

Acknowledgements

Part of this work was performed while Dr. Chrysafis Vogiatzis was an Assistant Professor with the Department of Industrial and Manufacturing Engineering at North Dakota State University. Funding: Chrysafis Vogiatzis would like to acknowledge support by Grant ND EPSCoR NSF 1355466.

References

  1. 1.
    Ghatak, H.R.: Biorefineries from the perspective of sustainability: feedstocks, products, and processes. Renew. Sustain. Energy Rev. 15, 4042–4052 (2011).  https://doi.org/10.1016/j.rser.2011.07.034 CrossRefGoogle Scholar
  2. 2.
    U.S. Energy Information Administration.: Biomass—energy explained, your guide to understanding energy. Energy Information Administration (2017). https://www.eia.gov/energyexplained/?page=biomass_home#tab1
  3. 3.
    Perlack, R.D., Wright, L.L., Turhollow, A.F., Graham, R.L., Stokes, B.J., Erbach, D.C.: Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply (2005). https://www1.eere.energy.gov/bioenergy/pdfs/final_billionton_vision_report2.pdf
  4. 4.
    Sharma, B., Ingalls, R.G., Jones, C.L., Khanchi, A.: Biomass supply chain design and analysis: basis, overview, modeling, challenges, and future. Renew. Sustain. Energy Rev. 24, 608–627 (2013).  https://doi.org/10.1016/j.rser.2013.03.049 CrossRefGoogle Scholar
  5. 5.
    Young, J.D., Anderson, N.M., Naughton, H.T., Mullan, K.: Economic and policy factors driving adoption of institutional woody biomass heating systems in the U.S. Energy Econ. 69, 456–470 (2018).  https://doi.org/10.1016/j.eneco.2017.11.020 CrossRefGoogle Scholar
  6. 6.
    Mohamed Abdul Ghani, N.M.A., Egilmez, G., Kucukvar, M., S. Bhutta, M.K.: From green buildings to green supply chains. Manag. Environ. Qual. 28, 532–548 (2017).  https://doi.org/10.1108/meq-12-2015-0211 CrossRefGoogle Scholar
  7. 7.
    Shafiee, S., Topal, E.: When will fossil fuel reserves be diminished? Energy Policy 37, 181–189 (2009).  https://doi.org/10.1016/j.enpol.2008.08.016 CrossRefGoogle Scholar
  8. 8.
    Raftery, J.P., Karim, M.N.: Economic viability of consolidated bioprocessing utilizing multiple biomass substrates for commercial-scale cellulosic bioethanol production. Biomass Bioenergy 103, 35–46 (2017).  https://doi.org/10.1016/j.biombioe.2017.05.012 CrossRefGoogle Scholar
  9. 9.
    Lainez-Aguirre, J.M., Pérez-Fortes, M., Puigjaner, L.: Economic evaluation of bio-based supply chains with CO2 capture and utilisation. Comput. Chem. Eng. 102, 213–225 (2017).  https://doi.org/10.1016/j.compchemeng.2016.09.007 CrossRefGoogle Scholar
  10. 10.
    Akgul, O., Shah, N., Papageorgiou, L.G.: Economic optimisation of a UK advanced biofuel supply chain. Biomass Bioenergy 41, 57–72 (2012).  https://doi.org/10.1016/j.biombioe.2012.01.040 CrossRefGoogle Scholar
  11. 11.
    Kim, S., Dale, B.E.: Comparing alternative cellulosic biomass biorefining systems: centralized versus distributed processing systems. Biomass Bioenergy 74, 135–147 (2015).  https://doi.org/10.1016/j.biombioe.2015.01.018 CrossRefGoogle Scholar
  12. 12.
    Wang, Y., Ebadian, M., Sokhansanj, S., Webb, E., Lau, A.: Impact of the biorefinery size on the logistics of corn stover supply—a scenario analysis. Appl. Energy 198, 360–376 (2017).  https://doi.org/10.1016/j.apenergy.2017.03.056 CrossRefGoogle Scholar
  13. 13.
    Clauser, N.M., Gutiérrez, S., Area, M.C., Felissia, F.E., Vallejos, M.E.: Small-sized biorefineries as strategy to add value to sugarcane bagasse. Chem. Eng. Res. Des. 107, 137–146 (2016).  https://doi.org/10.1016/j.cherd.2015.10.050 CrossRefGoogle Scholar
  14. 14.
    Gonzales, D.S., Searcy, S.W.: GIS-based allocation of herbaceous biomass in biorefineries and depots. Biomass Bioenergy 97, 1–10 (2017).  https://doi.org/10.1016/j.biombioe.2016.12.009 CrossRefGoogle Scholar
  15. 15.
    Sahoo, K., Hawkins, G.L., Yao, X.A., Samples, K., Mani, S.: GIS-based biomass assessment and supply logistics system for a sustainable biorefinery: a case study with cotton stalks in the Southeastern US. Appl. Energy 182, 260–273 (2016).  https://doi.org/10.1016/j.apenergy.2016.08.114 CrossRefGoogle Scholar
  16. 16.
    Zhang, F., Wang, J., Liu, S., Zhang, S., Sutherland, J.W.: Integrating GIS with optimization method for a biofuel feedstock supply chain. Biomass Bioenergy 98, 194–205 (2017).  https://doi.org/10.1016/j.biombioe.2017.01.004 CrossRefGoogle Scholar
  17. 17.
    Craige, C.C., Buser, M.D., Frazier, R.S., Hiziroglu, S.S., Holcomb, R.B., Huhnke, R.L.: Conceptual design of a biofeedstock supply chain model for eastern redcedar. Comput. Electron. Agric. 121, 12–24 (2016).  https://doi.org/10.1016/j.compag.2015.11.019 CrossRefGoogle Scholar
  18. 18.
    De Meyer, A., Cattrysse, D., Van Orshoven, J.: Considering biomass growth and regeneration in the optimisation of biomass supply chains. Renew. Energy 87, 990–1002 (2016).  https://doi.org/10.1016/j.renene.2015.07.043 CrossRefGoogle Scholar
  19. 19.
    Bai, Y., Hwang, T., Kang, S., Ouyang, Y.: Biofuel refinery location and supply chain planning under traffic congestion. Transp. Res. Part B Methodol. 45, 162–175 (2011).  https://doi.org/10.1016/j.trb.2010.04.006 CrossRefGoogle Scholar
  20. 20.
    Parker, N., Tittmann, P., Hart, Q., Nelson, R., Skog, K., Schmidt, A., Gray, E., Jenkins, B.: Development of a biorefinery optimized biofuel supply curve for the Western United States. Biomass Bioenergy 34, 1597–1607 (2010).  https://doi.org/10.1016/j.biombioe.2010.06.007 CrossRefGoogle Scholar
  21. 21.
    Li, Y., Hu, G., Wright, M.M.: An optimization model for sequential fast pyrolysis facility location-allocation under renewable fuel standard. Energy 93, 1165–1172 (2015).  https://doi.org/10.1016/j.energy.2015.09.090 CrossRefGoogle Scholar
  22. 22.
    Huang, Y., Chen, Y.: Analysis of an imperfectly competitive cellulosic biofuel supply chain. Transp. Res. Part E Logist. Transp. Rev. 72, 1–14 (2014).  https://doi.org/10.1016/j.tre.2014.09.008 CrossRefGoogle Scholar
  23. 23.
    Ng, R.T.L., Maravelias, C.T.: Economic and energetic analysis of biofuel supply chains. Appl. Energy 205, 1571–1582 (2017).  https://doi.org/10.1016/j.apenergy.2017.08.161 CrossRefGoogle Scholar
  24. 24.
    Hu, C., Liu, X., Lu, J.: A bi-objective two-stage robust location model for waste-to-energy facilities under uncertainty. Decis. Support Syst. 99, 37–50 (2017).  https://doi.org/10.1016/j.dss.2017.05.009 CrossRefGoogle Scholar
  25. 25.
    Lauven, L.P.: An optimization approach to biorefinery setup planning. Biomass Bioenergy 70, 440–451 (2014).  https://doi.org/10.1016/j.biombioe.2014.07.026 CrossRefGoogle Scholar
  26. 26.
    Ekşioğlu, S.D., Acharya, A., Leightley, L.E., Arora, S.: Analyzing the design and management of biomass-to-biorefinery supply chain. Comput. Ind. Eng. 57, 1342–1352 (2009).  https://doi.org/10.1016/j.cie.2009.07.003 CrossRefGoogle Scholar
  27. 27.
    Rentizelas, A.A., Tatsiopoulos, I.P.: Locating a bioenergy facility using a hybrid optimization method. Int. J. Prod. Econ. 123, 196–209 (2010).  https://doi.org/10.1016/j.ijpe.2009.08.013 CrossRefGoogle Scholar
  28. 28.
    Ghafghazi, S., Sowlati, T., Sokhansanj, S., Bi, X., Melin, S.: Life cycle assessment of base–load heat sources for district heating system options. Int. J. Life Cycle Assess. 16, 212–223 (2011).  https://doi.org/10.1007/s11367-011-0259-9 CrossRefGoogle Scholar
  29. 29.
    Ebadian, M., Sowlati, T., Sokhansanj, S., Townley-Smith, L., Stumborg, M.: Modeling and analysing storage systems in agricultural biomass supply chain for cellulosic ethanol production. Appl. Energy 102, 840–849 (2013).  https://doi.org/10.1016/j.apenergy.2012.08.049 CrossRefGoogle Scholar
  30. 30.
    Chang, K.H.: A decision support system for planning and coordination of hybrid renewable energy systems. Decis. Support Syst. 64, 4–13 (2014).  https://doi.org/10.1016/j.dss.2014.04.001 CrossRefGoogle Scholar
  31. 31.
    Mattiussi, A., Rosano, M., Simeoni, P.: A decision support system for sustainable energy supply combining multi-objective and multi-attribute analysis: an Australian case study. Decis. Support Syst. 57, 150–159 (2014).  https://doi.org/10.1016/j.dss.2013.08.013 CrossRefGoogle Scholar
  32. 32.
    Hunt, J.D., Bañares-Alcántara, R., Hanbury, D.: A new integrated tool for complex decision making: application to the UK energy sector. Decis. Support Syst. 54, 1427–1441 (2013).  https://doi.org/10.1016/j.dss.2012.12.010 CrossRefGoogle Scholar
  33. 33.
    Kurkalova, L.A., Carter, L.: Sustainable production: using simulation modeling to identify the benefits of green information systems. Decis. Support Syst. 96, 83–91 (2017).  https://doi.org/10.1016/j.dss.2017.02.006 CrossRefGoogle Scholar
  34. 34.
    Hakanen, J., Miettinen, K., Sahlstedt, K.: Wastewater treatment: new insight provided by interactive multiobjective optimization. Decis. Support Syst. 51, 328–337 (2011).  https://doi.org/10.1016/j.dss.2010.11.026 CrossRefGoogle Scholar
  35. 35.
    Macharis, C., Turcksin, L., Lebeau, K.: Multi actor multi criteria analysis (MAMCA) as a tool to support sustainable decisions: state of use. Decis. Support Syst. 54, 610–620 (2012).  https://doi.org/10.1016/j.dss.2012.08.008 CrossRefGoogle Scholar
  36. 36.
    Rosaly, B., Laurèn, D.: Renewable Energy 101 and the Importance of Incentives_The Sustainability Co-Op (2013). https://thesustainabilitycooperative.net/2013/10/13/all-about-renewables/
  37. 37.
    Bangalore, M., Hochman, G., Zilberman, D.: Policy incentives and adoption of agricultural anaerobic digestion: a survey of Europe and the United States. Renew. Energy 97, 559–571 (2016).  https://doi.org/10.1016/j.renene.2016.05.062 CrossRefGoogle Scholar
  38. 38.
    Simsek, H.A., Simsek, N.: Recent incentives for renewable energy in turkey. Energy Policy 63, 521–530 (2013).  https://doi.org/10.1016/j.enpol.2013.08.036 CrossRefGoogle Scholar
  39. 39.
    Tongsopit, S., Greacen, C.: An assessment of Thailand’s feed-in tariff program. Renew. Energy 60, 439–445 (2013).  https://doi.org/10.1016/j.renene.2013.05.036 CrossRefGoogle Scholar
  40. 40.
    Supriyasilp, T., Pinitjitsamut, M., Pongput, K., Wanaset, A., Boonyanupong, S., Rakthai, S., Boonyasirikul, T.: A challenge of incentive for small hydropower commercial investment in Thailand. Renew. Energy 111, 861–869 (2017).  https://doi.org/10.1016/j.renene.2017.05.009 CrossRefGoogle Scholar
  41. 41.
    Ozcan, M.: Assessment of renewable energy incentive system from investors’ perspective. Renew. Energy 71, 425–432 (2014).  https://doi.org/10.1016/j.renene.2014.05.053 CrossRefGoogle Scholar
  42. 42.
    Cobuloglu, H.I., Büyüktahtakın, İ.E.: A mixed-integer optimization model for the economic and environmental analysis of biomass production. Biomass Bioenergy 67, 8–23 (2014).  https://doi.org/10.1016/j.biombioe.2014.03.025 CrossRefGoogle Scholar
  43. 43.
    Fattahi, M., Govindan, K.: A multi-stage stochastic program for the sustainable design of biofuel supply chain networks under biomass supply uncertainty and disruption risk: a real-life case study. Transp. Res. Part E Logist. Transp. Rev. (2018).  https://doi.org/10.1016/j.tre.2018.08.008 CrossRefGoogle Scholar
  44. 44.
    Asadi, E., Habibi, F., Nickel, S., Sahebi, H.: A bi-objective stochastic location-inventory-routing model for microalgae-based biofuel supply chain. Appl. Energy (2018).  https://doi.org/10.1016/j.apenergy.2018.07.067 CrossRefGoogle Scholar
  45. 45.
    Xie, F., Huang, Y.: A multistage stochastic programming model for a multi-period strategic expansion of biofuel supply chain under evolving uncertainties. Transp. Res. Part E Logist. Transp. Rev. (2018).  https://doi.org/10.1016/j.tre.2018.01.015 CrossRefGoogle Scholar
  46. 46.
    Liu, Z., Johnson, T.G., Altman, I.: The moderating role of biomass availability in biopower co-firing—a sensitivity analysis. J. Clean. Prod. 135, 523–532 (2016).  https://doi.org/10.1016/j.jclepro.2016.06.101 CrossRefGoogle Scholar
  47. 47.
    Mohamed Abdul Ghani, N.M.A., Vogiatzis, C., Szmerekovsky, J.: Biomass feedstock supply chain network design with biomass conversion incentives. Energy Policy 116, 39–49 (2018).  https://doi.org/10.1016/j.enpol.2018.01.042 CrossRefGoogle Scholar
  48. 48.
  49. 49.
  50. 50.
    Mayer, M.: Placing a Value on Corn Stover. UW Ext. 2012 (2012). https://green.extension.wisc.edu/files/2010/05/Placing-a-Value-on-Corn-Stover.pdf
  51. 51.
    Maung, T.A., Gustafson, C.R.: The viability of harvesting corn cobs and stover for biofuel production in North Dakota (2011). https://ideas.repec.org/p/ags/aaea11/103613.html
  52. 52.
    Tao, L., Templeton, D.W., Humbird, D., Aden, A.: Bioresource technology effect of corn stover compositional variability on minimum ethanol selling price (MESP). Bioresour. Technol. 140, 426–430 (2013).  https://doi.org/10.1016/j.biortech.2013.04.083 CrossRefGoogle Scholar
  53. 53.
    Gallagher, P.W.: Biomass supply from corn residues: estimates and critical review of procedures (2012). https://www.usda.gov/oce/reports/energy/Biomass%20Supply%20From%20Corn%20Residues-Nov-2012.pdf
  54. 54.
    Gustafson, C.R., Maung, T.A., Saxowsky, D.: Economics of sourcing cellulosic feedstock for energy production (2011). https://ideas.repec.org/p/ags/aaea11/103260.html
  55. 55.
    Xie, F., Huang, Y., Eksioglu, S.: Bioresource technology integrating multimodal transport into cellulosic biofuel supply chain design under feedstock seasonality with a case study based on California. Bioresour. Technol. 152, 15–23 (2014).  https://doi.org/10.1016/j.biortech.2013.10.074 CrossRefGoogle Scholar
  56. 56.
    Humbird, D., Davis, R., Tao, L., Kinchin, C., Hsu, D., Aden, A., Schoen, P., Lukas, J., Olthof, B., Worley, M., Sexton, D.: Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol (2011). https://www.osti.gov/biblio/1013269-process-design-economics-biochemicalconversion-lignocellulosic-biomass-ethanol-dilute-acid-pretreatment-enzymatichydrolysis-corn-stover
  57. 57.
    Aakre, D.G., Haugen, R.: Results of the North Dakota land valuation model for the 2013 agricultural real estate assessment, p. 21 (2013). https://ideas.repec.org/p/ags/nddaae/157657.html
  58. 58.
    Mcaloon, A., Taylor, F., Yee, W., Regional, E., Ibsen, K., Wooley, R., Biotechnology, N.: Determining the cost of producing ethanol from corn starch and lignocellulosic feedstocks (2000). https://www.nrel.gov/docs/fy01osti/28893.pdf
  59. 59.
    ESRI.com.: ESRI (2016). https://www.esri.com/en-us/home
  60. 60.
    Osmani, A., Zhang, J.: Multi-period stochastic optimization of a sustainable multi-feedstock second generation bioethanol supply chain—a logistic case study in Midwestern United States. Land Use Policy 61, 420–450 (2017).  https://doi.org/10.1016/j.landusepol.2016.10.028 CrossRefGoogle Scholar
  61. 61.
    OpenSolver.: OpenSolver for Excel—The Open Source Optimization Solver for Excel. https://opensolver.org/
  62. 62.
    Brechbill, S., Tyner, W.E.: The economics of renewable energy: corn stover and switchgrass. Perdue Ext. Publ., pp 1–6. (2008). https://www.extension.purdue.edu/extmedia/ID/ID-404.pdf
  63. 63.
    James, D.S.: The viability of lignocellulosic ethanol production as a business endeavour in Canada (2013). https://open.library.ubc.ca/cIRcle/collections/ubctheses/24/items/1.0073518

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Maritime StudiesUniversiti Malaysia TerengganuKuala NerusMalaysia
  2. 2.Department of Transportation and LogisticsNorth Dakota State UniversityFargoUSA
  3. 3.Upper Great Plains Transportation InstituteNorth Dakota State UniversityFargoUSA
  4. 4.Department of Industrial and Enterprise Systems EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations